Mostrando postagens com marcador calcio. Mostrar todas as postagens
Mostrando postagens com marcador calcio. Mostrar todas as postagens

quinta-feira, 23 de julho de 2009

Cana-de-açúcar - Nutrientes e adubação (2)

Na Parte I tivemos a oportunidade de comentar a extração e exportação de nutrientes do colmo e folhas da cana-de-açúcar, a importância dos mesmos, as deficiências dos macros e micronutrientes, a necessidade da correção do solo.
Cana-de-açúcar - Nutrientes e adubação (Parte 1)

A recomendação de calcário para a cana planta, no Estado de São Paulo, baseia-se na percentagem de saturação por bases (V%).
NC = (V2 - V1) T / PRNT, onde
V2 = % saturação por bases que se quer atingir (60%)
V1 = % saturação por bases conforme análise do solo
T = capacidade de troca de cátions em cmolc/dm³
NC = necessidade de calcário em t/ha
Para quem não se lembra:
T = S + (H+Al) em cmolc/dm³
S = Ca+Mg+K em cmolc/dm³
1 cmolc/dm³ = 10 mmolc/dm³
Por exemplo: V1 = 12% ; V2 = 60% ; T = 15 cmolc/dm³ ; PRNT = 80, logo
NC = (60-27) x 15 / 80 = 6, 18 t/ha

Vitti & Mazza apresentam uma fórmula para o cálculo da necessidade de calagem (NC) levando em consideração os resultados das amostras colhidas de 0-20 cm e de 20-40 cm.
NC = (V2-V1)CTC¹ + (V2-V1)CTC² / PRNT
CTC¹ = T¹ = capacidade de troca de cátions da camada de solo de 0-20 cm
CTC² = T² = capacidade de troca de cátions da camada 20-40 cm
Nesta fórmula, a NC t/ha seria a quantidade de calcário para aplicar na camada de 0-40 cm de solo.Luz & Martins, citados por Vitti, apresentam a seguinte fórmula para a cana planta.
NC = (V2-V1)CTC¹ /PRNT + 1/2(V2-V1)CTC² /PRNT
A NC encontrada em t/ha é para a incorporação do calcário na camada de 0-40 cm.
A COPERSUCAR, recomenda para solos arenosos a seguinte fórmula para encontrar a NC.
NC = 3 - (Ca+Mg) x 100 / PRNT
NC = t/ha para a camada de 0-20 cm.
Na cana soca, Vitti & Mazza indicam a seguinte fórmula para calcular a necessidade de calagem.
NC t/ha = (V2-V1)T / PRNT . A dose máxima deve ser de 3 t/ha.Na fabricação do superfosfato simples, há uma grande produção de um subproduto - o gesso ou sulfato de cálcio dihidratado. O gesso é mais solúvel e mais móvel que o calcário e fornece nutrientes como o Ca e S para as plantas, corrige áreas sódicas e é um ótimo condicionador para estercos reduzindo as perdas de N por volatilização. Na correção das áreas sódicas, o Ca do gesso substitui o sódio (Na) adsorvido à argila com formação de sulfato de sódio que é móvel no solo. Por ser mais solúvel que o calcário, o gesso corrige a acidez do solo mais rapidamente além de liberar cálcio para absorção pelas plantas e desenvolver o sistema radicular com grandes benefícios para os cultivos. O gesso pode ser utilizado nas áreas de depósito da vinhaça as quais apresentam excesso de potássio. Neste caso, haverá formação de sulfato de potássio que é bastante móvel no perfil do solo. A aplicação e incorporação do gesso, com irrigação, promove uma substituição do potássio (K) adsorvido aos coloides do solo pelo cálcio (Ca) contido no subproduto. O gesso deve ser usado quando a amostragem de 20-40 cm apresentar teores de Ca menor que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, alumínio (Al) maior que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, saturação por alumínio (m%) maior que 30% e saturação por bases (V%) menor que 35%. No cálculo da necessidade de gesso busca-se atingir V2 = 50%. na camada de 20-40 cm.
NG = (V2-V1)T / 100  
NG (t/ha) = (50-V1).T / 100
Os valores V1, T são os encontrados nos resultados de análise das amostras colhidas na profundidade de 20-40 cm.A fosfatagem é uma prática que proporciona maiores volumes de P no solo, mas o problema é a maior fixação. Esta prática promove um melhor desenvolvimento radicular das plantas com melhor absorção dos nutrientes e da água do solo. Pelo desenvolvimento, as raízes vão mais longe, explorando um maior volume de solo, encontrando nutrientes e água para suportar melhor os períodos de estiagem. Os produtores devem buscar as recomendações de um técnico quanto às necessidades e quantidades de fósforo nos canaviais.
Na adubação verde preferir sempre uma leguminosa devido a fixação do nitrogênio do ar pelas bactérias fixadoras que vivem em simbiose nas raízes. Isto faz com que a adubação nitrogenada seja dispensada. A utilização da adubação verde assegura um melhor controle e menor perdas de solo carregado de nutrientes, pela erosão. A incidência de ervas daninhas é diminuída.
Quanto à adubação orgânica, os dois principais resíduos orgânicos da cana-de-açúcar são a torta de filtro e a vinhaça. A torta de filtro é rica em P2O5 e CaO e é utilizada na cana planta, em toda a área, nas dosagens de 30 a 60 t/ha. A torta substitui, total ou parcialmente, a adubação fosfatada, sempre procurando verificar a dosagem de P2O5 recomendada.
A vinhaça é empregada na cana soca fornecendo todo o K2O e parte de N. O restante do N deve ser aplicado em cobertura através dos adubos nitrogenados existentes no mercado.
Quanto à adubação de plantio, deve ser processada através da análise do solo. No sulco usa-se P e K. O nitrogênio (N) é aplicado na dose de 30 a 40 kg/ha. Se foi feita a rotação de culturas com uma leguminosa, dispensa-se o uso deste nutriente. A ureia aplicada em solos cobertos por palhada provoca perdas elevadas de N por volatilização de 50 a 94%. A chuva ou a irrigação com vinhaça pode reduzir esta taxa, pois arrastam o fertilizante para as profundidades do solo diminuindo a volatilização. O sulfato de amônio não sofre grandes perdas por volatilização mas a desnitrificação se faz presente. Quanta à palhada, as altas relações C/N, C/P e C/S indicam uma baixa de nutrientes N, P e S, e a planta responderá à adubação nitrogenada.
Vitti recomenda em solos com menos de 25% de argila, usar 100 a 150 kg/ha de P2O5 em toda a área e 100 kg/ha de P2O5 no sulco de plantio. Já em solos arenosos, aplicar 100 kg/ha de K2O no sulco de plantio e o restante em cobertura.
Na adubação da cana soca, para cada tonelada de colmos esperada, aplicar a dose de 1 kg/ha de N. Se a produção esperada é de 100 toneladas de colmos, aplicar 100 kg/ha de N. Quanto ao K, aplicar quantidades de acordo com a produção esperada e conforme os teores do nutriente nas amostragens de solos das soqueiras. Manter a relação N:K2O de 1:1 ou 1:1,5.

segunda-feira, 20 de julho de 2009

Cana-de-açúcar - Nutrientes e adubação (I)

A planta executa os processos de extrair e exportar nutrientes. Extrair ou extração é a quantidade de nutrientes que ela precisa para o seu desenvolvimento desde a germinação até a produção. Exportar ou exportação é a quantidade de nutrientes que fica retido em suas partes verdes ou na palhada.
G.Vitti cita a tabela de Orlando F° que dá uma ideia da quantidade de nutrientes macros e micros extraídos e exportados por 100 toneladas de colmos de cana-de-açúcar.
Como o P e o K nos fertilizantes estão expressos em P2O5 e K2O teremos que transformá-los:
Para transformar P em P2O5 multiplica-se P por 2,29.
P2O5 __________ P2
(31x2) + 16x5______31x2
142 ________ 62 = 142/62 = 2,29
Para transformar K em K2O
K2O ___________ K2
39x2 + 16 ________ 39x 2
94 ________ 78 = 94/78 = 1,20

Assim sendo, na tabela ao lado temos o total de 19 P. Logo, 19 X 2,29 = 43 kg/ha de P2O5  Quanto ao potássio (K), teremos 174 X 1,20 = 210 kg/ha de K2O.
Na instalação do canavial, na adubação de plantio usa-se mais fósforo (P2O5) e potássio (K2O) e menos nitrogênio. As coberturas serão de K2O  Por sua vez, na cana soca, usa-se mais nitrogênio (N) e potássio (K2O) e menos fósforo (P2O5).
Deve ser feita a calagem da área de modo a se atingir V= 60%. A fosfatagem deve ser realizada quando o teor de P é menor que 15 mg/dm³ e CTC menor que 6 cmolc/dm³. No sulco de plantio, o trio N-P2O5-K2O deve ser aplicado conforme a recomendação técnica baseada na amostragem do solo, mais aplicação de micronutrientes e uma adubação orgânica. Em cobertura usa-se K2O quando a recomendação ultrapassar a 100 kg/ha. As coberturas de N devem ser feitas eventualmente.
Na cana soca, utiliza-se cobertura NPK com baixas quantidades de P2O5  Os micronutrientes são aplicados via foliar e a ureia adicionada ao molibdênio.
Como toda planta cultivada em solos deficientes de um ou mais nutrientes, a cana-de-açúcar apresenta, também, sintomas de deficiências nutritivas. As deficiências são:
Nitrogênio: são reconhecidas pelo amarelecimento geral das folhas que inicia pelas folhas mais velhas. Os colmos são mais finos.
Fósforo: inicia-se nas folhas mais velhas que diminuem de tamanho. Há uma clorose avermelhada com morte das folhas. O crescimento da planta é reduzido. O sistema radicular é pouco desenvolvido não suportando períodos de seca.
Potássio: aparece nas folhas mais velhas uma mistura de áreas verde-claras e escuras, clorose nas bordas e áreas necróticas. O teor de açúcar no colmo é baixo.
Cálcio: surge nas folhas mais novas. As folhas ficam esbranquiçadas, enroladas e com uma necrose escura nas pontas. Muitas vezes, a deficiência de cálcio é originária de uma aplicação de vinhaça em excesso. A vinhaça é rica em potássio que compete pela absorção de cálcio.
Magnésio: aparecem manchas amareladas e longas entre as nervuras das folhas mais velhas.
Enxofre: há uma clorose generalizada das folhas jovens.
Boro: as folhas apresentam manchas cloróticas estriadas. Há morte da gema terminal. A incidência de Fusarium é maior. As folhas do topo se amarram umas às outras.
Cobre: aparecem clorose nas folhas mais jovens e pequenas manchas verde-escuras. As folhas caem e aparecem touceiras.
Manganês: estriamento ao longo das nervuras e folhas mais finas.
Zinco: há uma redução de crescimento dos entrenós, as nervuras das folhas com clorose e o crescimento do topo paralisa.

A correta aplicação da quantidade de nutrientes vai se basear nos indícios de fertilidade do solo demonstrados pelos resultados de análises deste solos. Na cana planta a melhor época para retirada de amostra de solo é três meses antes do plantio. As amostras devem ser retiradas nas profundidades de 0 - 20 cm e de 20 - 40 cm. A área deve ser percorrida em zig-zag e colendo-se de 15 a 20 sub-amostras. Na cana soca, a melhor época é logo após o corte. As amostras de solo devem ser retiradas de 20-25 cm da linha. Deve-se cuidar isto porque amostras retiradas na linha super estimarão os teores de P e K. As amostras retiradas nas entre-linhas super estimarão os resultados de Ca e Mg e os valores de soma de bases (S) e saturação por bases (V%). Por outro lado, os valores de P e K serão subestimados.
A calagem fornece cálcio e magnésio. O cálcio promove um maior desenvolvimento do sistema radicular e com isto as raízes das plantas vão buscar mais longe os nutrientes do solo e as plantas suportam melhor os períodos de estiagem e veranicos. Pela calagem, os nutrientes são melhor disponibilizados numa faixa de pH de 6 a 6,5. A fixação do fósforo é amenizada porque o ferro (Fe), o alumínio (Al) e o manganês (Mn) que são tóxicos para as plantas, são menos disponibilizados formando compostos insolúveis que não são aproveitados pelas plantas. A palhada possui fósforo e com a mineralização da matéria orgânica este nutriente é liberado para as plantas. Este fósforo húmico é fracamente retido pelo solo. A fixação do nitrogênio do ar pelas bactéria do gênero Beijerinckia têm uma atividade maior quando o pH situa-se entre 5,5 - 6,0. Assim sendo, há liberação de nitrogênio (N) em grandes quantidades para as plantas. Por isto, a recomendação de N em cana planta é em doses baixas. Os toletes usados devem ter alta quantidade de açúcar que fornece energia para as bactérias. Com a calagem, a compactação do solo é menor porque o cálcio tem um efeito de agregação. E, com isto, a calagem, por todos os fatores descritos antes, propicia um aumento da produtividade de cana-de-açúcar.

segunda-feira, 22 de junho de 2009

Os macronutrientes secundários

O cálcio, o magnésio e o enxofre são macronutrientes importantes para o crescimento e produção das culturas. O cálcio e o magnésio estão presentes no calcário dolomítico e são indispensáveis na correção da acidez do solo. Já o enxofre (S) tem um efeito primordial em solos alcalinos.

Cálcio - este nutriente ajuda a aumentar a produtividade das culturas pelo melhor crescimento das raízes, aumento da atividade microbiana, aumento da disponibilidade de molibdênio (Mo) e a absorção de alguns nutrientes. O aumento da área das raízes favorece uma melhor absorção de nutrientes que estão disponíveis numa área maior de solo. O cálcio reduz a solubilidade e a toxidez do manganês, cobre e alumínio. As plantas bem supridas de cálcio suportam melhor a toxidez causada pelo alumínio. O calcário é a principal fonte de cálcio junto com o gesso. A deficiência de cálcio provoca uma má formação dos grãos e folhas novas enroladas no milho. Os sintomas de deficiência deste nutriente se manifesta pelo desenvolvimento de um sistema radicular pequeno, as raízes ficam escuras e apodrecem. Como é pouco móvel na planta aparecem sintomas de deficiência nas folhas jovens. Daí a necessidade de um suprimento de cálcio contínuo pelo solo. Os solos argilosos apresentam maiores teores de cálcio do que os solos arenosos. Para os solos ácidos recomenda-se o calcário e para os solos alcalinos, o gesso (sulfato de cálcio) ou fertilizantes que apresentam os nutrientes no grão (NPK no grão) que contenham o cálcio para liberação rápida. O cálcio é absorvido na forma Ca²+.

Magnésio - o teor de magnésio no solo é menor que o de cálcio. Por ser muito solúvel está sujeito às perdas por lixiviação. O magnésio faz parte da clorofila. Sua deficiência provova um amarelecimento entre as nervuras das folhas velhas. No algodão, aparece uma cor avermelhada entre as nervuras verdes. Em forragens pobres de magnésio, os animais sofrem a "tetania dos pastos". Sua deficiência é mais nítida em solos ácidos.

Enxofre - a matéria orgãnica do solo é a maior fonte de enxofre (S), bem como o íon sulfato presente no complexo de trocas. O enxofre é absorvido pelas plantas como íon sulfato (SO3). O enxofre contido na atmosfera é uma das maiores fontes . Em solos com pH acima de 7,0 o enxofre não é facilmente aproveitado pelas plantas. Ele precipita-se como sulfato de cálcio insolúvel. Sua deficiência nas folhas é semelhante à do nitrogênio, com um amarelo pálido ou verde suave. O enxofre pode ser fornecido pelo óxido de enxofre, do ar, que entra nas folhas pelos estômatos. O enxofre ajuda a desenvolver enzimas, promove a nodulação para a fixação do N do ar pelas leguminosas, melhora a qualidade das sementes e é a fonte de proteínas e aminoácidos, como cistina, cisteína e metionina.
O superfosfato simples, além do fósforo, contém , também, enxofre na sua composição com um teor de 10-12% . O gesso, que é um sub-produto da fabricação do super simples, apresenta 12-18% de enxofre. Recomenda-se combinar a aplicação em cobertura de N e S conjuntamente. Existe no mercado nacional, fertilizantes que são a combinação de uréia com uma fonte de enxofre para ser usado em cobertura. Esta mistura fertilizante garante benefícios pois há um melhor aproveitamento do nitrogênio (N) do que quando a uréia é aplicada isoladamente, diminui as perdas por volatilização do N e apresenta menor custo benefício por hectare.
No solo 90% do enxofre está na forma orgânica. Solos com baixa matéria orgânica apresentam deficiências de enxofre. Os solos no Brasil são de baixo teor de enxofre, possivelmente causado pelas altas produções da culturas, de modo contínuo, pelas queimadas que causam a volatilização do S, pela alta relação C/S que dificulta a mineralização. Na mineralização, muitos fungos e bactérias atuam no processo que é muito importante. A utilização da matéria orgânica pelos microorganismos pode ocorrer tanto em condições aeróbias, cujo produto final são SO4²- e condições anaeróbias com H2S. As formas de enxofre encontradas no ar como SO2, H2S e SO2²- são formas gasosas e fontes muito importantes de S para as plantas. A decomposição das plantas libera dióxido de enxofre na atmosfera que aumenta a acidez da água da chuva, conhecida como "chuva ácida".
As plantas de milho apresentam maior absorção radicular de enxofre do que as plantas de soja, além de reter grande parte deste nutriente na raíz. Davi José Silva e outros, concluiram através de pesquisas que as plantas de milho apresentam maior absorção radicular de S do que as plantas de soja, além de reter grande parte deste nutriente na raiz. No milho, o enxofre aplicado a uma folha é transportado para o caule e para as raízes. Na soja, o enxofre absorvido tanto pela raiz quanto pela folha é transportado, em maior proporções, para as folhas superiores redistribuindo para outras partes da planta.
Em solos bem drenados, formas reduzidas são oxidadas a SO4²-, forma inorgânica e absorvida pelo sistema radicular. Porém as formas reduzidas, os sulfetos e H2S são importantes nos solos alagados e anaeróbios. Em condições de má drenagem existe o acúmulo de sais solúveis de enxofre. Nos solos alcalinos ou calcários existe as formas insolúveis.
As entradas de S no solo se dá através das chuvas e irrigação, pela mineralização das formas orgânicas, pelo intemperismo das rochas, e através dos fertilizantes.
As saidas de S do solo se verifica pela emissão de gases, pela adsorção, pela erosão, pela lixiviação, pela imobilização e pela absorção pelas plantas.

terça-feira, 26 de maio de 2009

Produtos orgânicos X fertilizantes minerais - Parte I

A adubação orgânica vem tendo uma importância muito grande quando se fala em nutrição do solo. Os adubos orgânicos provém de estercos de animais, restos de culturas e adubo verde. Vem ganhando força, no cenário agrícola, o lodo de esgoto como fonte de nutrientes para as plantas. É óbvio que a adubação orgânica pela baixa concentração de nutrientes não substitui totalmente os fertilizantes minerais. Mas os adubos orgânicos contribuem para uma melhor aeração do solo, armazenamento de água e drenagem do solo. Os estercos sólidos e os restos orgânicos apresentam uma relação carbono/nitrogênio mais alta. Há uma decomposição mais lenta no solo liberando menores quantidades de nutrientes para as plantas.
Os agricultores de Londrina/PR terão à disposição 300 m³ de lodo de esgoto (LE). O produto já vem sendo usado pelos agricultores da região metropolitana de Curitiba/PR. Eles falam do aumento na produção de 30 a 40% e de economia na aplicação de calcário e fertilizantes. Existem duas Estações de Tratamento de Esgoto - ETE -, uma em Londrina e outra em Cambé. Elas geram 15.000 m³ de esgoto por ano. Os agricultores estão satisfeitos visto a diminuição dos custos em fertilizantes e calcários, já que o LE possui estes nutrientes. O LE é rico em matéria orgânica e tem quantidade significativa de nutrientes como é o caso do nitrogênio (N). Pode ser usado nas culturas de trigo, milho e soja. Todavia não é indicado para hortaliças e plantas cuja parte destinada à alimentação humana se desenvolva em contato direto com a terra. Além do N, o lodo de esgoto contém fósforo (P), micronutrientes e cálcio. O cálcio é proveniente do tratamento do produto com cal para higienização. A cal usada pode substituir, em parte, a quantidade de calcário recomendada para aplicação no solo. Há um controle da existência de metais pesados antes da liberação do produto. Na região metropolitana de Curitiba já foram distribuídos, no período de 2000-2008, 175.300 m³ de lodo de esgoto. Em Foz do Iguaçú, 1.500 m³.
CARVALHO & BARRAL (1981) disseram que pelo processo de mineralização da matéria orgânica (M.O), há uma lenta liberação de nutrientes ocasionando um melhor aproveitamento para as plantas. LESLIE (1970) e MAYS et al (1973) demonstraram que o crescimento das plantas e a produção de grãos foram iguais ou maiores que àquelas que receberam fertilizantes químicos. CUNNINGHAN et al (1973) obteram aumento na produção de milho relacionada à liberação de nutrientes NPK. SABEY et al (1977) verificaram que as plantas de trigo tiveram maior desenvolvimento em solos que receberam lodo de esgoto, misturado com restos de madeira, em comparação à fertilização mineral. F.C.Oliveira e outros (1995) verificaram que o LE liberou nutrientes que foram absorvidos pelas plantas de sorgo e que há uma necessidade de complementar o LE com potássio (K). Verificaram, também, que aplicações de LE acima de 20 t/ha pode apresentar resultados melhores no desenvolvimento do sorgo.

1 - Produtos orgânicos sólidos

Para calcular a quantidade de nutrientes contidas em um material orgânico usa-se a fórmula:

Qn = A x B/100 x C/100 x D
, onde

A = quantidade de material aplicado em kg/ha;
B = % de matéria seca (MS) do material aplicado;
C = % do nutriente na matéria seca;
D = índice de eficiência de cada nutriente.
Por exemplo, seja 1.000 kg/ha de material orgânico com 70% de MS, teor de nitrogênio (N) de 3,8% e um índice de eficiência do nitrogênio de 0,5


N kg/ha = 1.000 x 70/100 x 3,8/100 x o,5 ; N = 13 kg/ha

2 - Produtos orgânicos líquidos

Qn = A x B x C


A = quantidade de material aplicado em m³
B = concentração do nutriente no produto em kg/m³
C = índice de eficiência de cada nutriente

A utilização de restos orgânicos e fertilizantes minerais são capazes de otimizar a produção das plantas. Como já escrevemos, somente o material orgânico não é suficiente para elevar a produtividade pois a relação de nutrientes existente no material é diferente daquela exigida pela cultura. Há necessidade de complementar com o uso de adubos minerais.
Leia as Partes 2 e 3
Produtos orgânicos x fertilizantes minerais - Parte 2
Produtos orgânicos x fertilizantes minerais - Parte 3

quinta-feira, 21 de maio de 2009

Cálculo de quantas unidades de Ca e Mg foram aplicadas ao solo pela calagem

A aplicação de 6 toneladas de calcário/ha com teores de 39% CaO e 12% de MgO corresponderia a quantos cmolc/+/dm³ de Ca²+ e a quantos cmolc /dm³ de Mg ?

Já sabemos (ver postagens anteriores) que em 1 tonelada aplicada de calcário, cada 1% de CaO corresponde o fator 0,01783. Então,39 x 0,01783 = 0,69537 cmolc Ca²+/dm³.
Como são 6 toneladas,
6 x 0,69537 = 4,17 cmolc /dm³ Ca²Em relação ao MgO, para cada 1% de MgO corresponde o fator 0,0248.
12 x 0,0248 = 0,2976 cmolc /dm³ Mg²+
Como são 5 toneladas: 6 x 0,2976 = 1,78 cmolc /dm³ Mg²+
As fórmulas abaixo também podem ser usadas e darão os mesmos resultados, quando a aplicação de calcário for maior de 1 tonelada :

cmolc Ca²+/dm³ = teor de CaO %/t x (n) x 0,01783
cmolc Mg²/dm³ = teor de MgO %/t x (n) x 0,0248


onde (n) = quantidade de calcário em toneladas.

terça-feira, 12 de maio de 2009

Calculando as matérias-primas numa fórmula de fertilizante.

Numa indústria, os químicos são responsáveis pelo cálculo das formulações que são enviadas ao parque industrial onde estão as matérias-primas estocadas e os equipamentos de moagem, granuladores, misturadores, ensacadores etc. Tudo supervisionado por uma equipe de engenheiros de diversas especialidades.
A fórmula é calculada com base em 1.000 kg de matérias-primas, depois registrada nos orgãos governamentais competentes. Após obtido o registro, o produto começa a ser industrializado e depois comercializado.
Para isto devemos saber quais as matérias-primas que podem ser utilizadas.
Nós temos formulações:
· NPK (que contém os três principais nutrientes, nitrogênio (N), fósforo (P) e potássio (K). Por exemplo a fórmula 5 – 30 - 15
· NP que contém somente nitrogênio e fósforo. Por exemplo: 05 – 20 – 00 ou as matérias-primas Fosfatos monoamônio e diamônio;
· PK que possuem somente fósforo e potássio. Exemplo: 0 – 30 – 15
· NK que possuem nitrogênio e potássio. Exemplo: 10 – 0 – 15 e nitrato de potásio.

Nós devemos conhecer, também, as matérias primas que podem ser utilizadas.
1. Como fonte de nitrogênio mais utilizadas são a uréia com 45% de N. O sulfato de amônio com 20% de N. O fosfato monoamônio - MAP com 11% de N e 60% de P2O5. O fosfato diamônio - DAP com 17% de N e 47% de P2O5;
2. Como fonte de fósforo, os superfosfato simples com 18% de P2O5. O superfosfato triplo com 41% deP2O5 e os fosfatos MAP e DAP;
3. Como fonte de potássio, o cloreto de potássio com 60% de K2O. é o mais utilizado como fonte de K2O.
As garantias expressas acima são as garantias mínimas determinadas pela Legislação Brasileira de Fertilizantes. Claro que podemos encontrar matérias-primas com teores um pouco maior mas o importante é que não podem ser comercializadas se não atenderem os requisitos mínimos.
Sabendo isto tudo, estamos aptos a calcular uma fórmula de fertilizantes. Chamo a atenção que a fórmula cujo resultado chegaremos não é a única pois com as mesmas garantias de nutrientes podemos ter várias composições. O importante é chegar no resultado final que expresse a garantia dos nutrientes. As indústrias, também, utilizam as matérias-primas que elas têm na ocasião da fabricação da mistura.

Vamos supor o cálculo da fórmula 5 – 30 – 15 que contem 5% de N, 30% de P2O5 e 15% de K2O. Isto quer dizer que em 100 kg teremos 5 kg de N, 30 kg de P2O5 e 15 kg de K2O. Em 1.000 kg, 50 kg de N, 300 kg de P2O5 e 150 kg de K2O. Por hipótese, as matérias-primas disponíveis são:
Fosfato diamônio (DAP) – 17% de N e 47% de P2O5
Superfosfato simples (SS): 18% de P2O5
Superfosfato triplo (ST): 42% de P2O5
Cloreto de potássio (KCl) – 60% de K2O

1° Passo - partir de um nutriente fornecido por uma só matéria-prima
Neste caso, este nutriente é o potássio na fórmula expresso por 15% de K2O.
Toda fórmula de fertilizante é calculada para 1.000 kg. Neste caso, precisamos 150 kg de K2O.
100 kg de KCl ............. 60 kg K2O
X ................................ 150 kg K2O
X = 150 x 100 / 60 = 250 kg/t de KCL

2° Passo – calcular os demais nutrientes
Faltam, portanto, 750 kg de matéria-prima para fechar os 1.000 kg.
Vamos partir, agora, para o nitrogênio (N) e fósforo (P) pois temos duas matérias-primas que fornecem o nitrogênio e o fósforo – o MAP e o DAP. Vamos escolher o DAP.
100 kg de DAP ............... 17 kg de N
X ............................50 kg de N
X = 50 x 100 / 17; X = 294 kg/t DAP = 294 kg/t
Como o DAP também fornece P2O5,
100 kg de DAP ................ 47 kg de P2O5
294 kg de DAP ................ X
X = 294 x 47 / 100 = 138,18 kg/t de P2O5

Precisamos de 300 kg de P2O5. Como já temos 138,18 kg, estão faltando 161,82 kg de P2O5. Ou seja, 16,18%. Em matérias-primas, temos os 250 kg de KCl e os 294 kg do DAP que somam 544 kg. Faltam, portanto 456 kg de matérias-primas que vão ser distribuídos entre os SS e ST.
Aqui vamos aplicar uma equação matemática. a = superfosfato simples (18%) b = superfosfato triplo (42%)
(1) 18 a + 42 b = 16.180 (16,18 x 1000)
(2) a + b = 456 kg ; logo:  b = 456 – a
Substituindo (b) na equação acima (1), teremos:
18 a + 42 (456 – a ) = 16.180
18 a + 19.152– 42 a = 16.180;
18a - 42 a = 16.180 – 19.152
-24 a = -2.972   .'.  multiplicando por (-1) teremos
24 a = 2.972
a = 2.972 / 24 = 123 kg/t de superfosfato simples
Para achar o superfosfato triplo (b) vá na equação (2) e substitua a = 123 .'. b = 456 – a   .'. b = 456 – 123 = 333 kg/t de superfosfato triplo
Está pronta a nossa formula 5 – 30 – 15 Vamos conferir?
250 kg de cloreto de potássio KCL = 250 x 60 / 1000 = 15% de K2O
294 kg de fosfato diamônio DAP = 294 x 18 N / 1000 = 5% de N e DAP = 294 x 47 de P / 1000 = 13,818% de P2O5
123 kg de supersimples = 123 x 18 P2O5/1000 = 2,214% de P2O5
357 kg de supertriplo = 333 x 42 P2O5/1000 = 13,986% de P2O5
Somando as matérias-primas = 250+294+123+333 = 1.000 kg
Somando os nutrientes
Nutriente P (P2O5) = 13,818+2,214+13,986 = 30%
Nutriente N = 5%
Nutriente Potássio (K2O) = 15%

Além disto, o superfosfato simples contém na sua formulação 8% de enxofre (S) enquanto o supertriplo contém 10% de Ca.
Supersimples – 123 x 8 S /1.000 = 0,98% de S
Superfosfato triplo – 333 x 10 Ca /1.000= 3,3% de Ca

quinta-feira, 7 de maio de 2009

Os nutrientes das plantas (3) - Cálcio (Ca), Magnésio (Mg) e Enxofre (S)



Macronutrientes Secundários

Cálcio (Ca):

É outro macronutriente importante para as plantas. É chamado macronutriente secundário junto com o magnésio (Mg) e o enxofre (S).

Os efeitos indiretos do cálcio são tão importantes quanto o seu papel como nutriente. O cálcio promove a redução da acidez do solo, melhora o crescimento das raízes, aumento da atividade microbiana, aumento da disponibilidade de molibdênio (Mo) e de outros nutrientes. O cálcio reduzindo a acidez do solo, diminui a toxidez do alumínio (Al), cobre (Cu) e manganês (Mn). Plantas que apresentam altos teores de cálcio resistem melhor a toxidez destes elementos.
As vagens chochas na soja e as folhas enroladas no milho são sintomas de deficiência de cálcio.
O cálcio existe tanto na forma de cátion como parte insolúvel dos minerais do solo. As formas disponíveis Ca++ são adsorvidas nos colóides do solo. Pela troca de cátions, elas passam para a solução do solo e depois são absorvidas pelas plantas.
O calcário e o gesso são as principais fontes de cálcio e são, também, condicionadores de solos. Além destes, existem fertilizantes que contém na sua composição o cálcio como o superfosfato simples com 18-20% de cálcio, o superfosfato triplo com 12% e outros conforme quadro que apresentamos no Capítulo da Legislação Brasileira de Fertilizantes.

Magnésio (Mg):

Outro importante macronutriente secundário. O magnésio apresenta, no solo, teores menores do que o cálcio porque é mais solúvel e sujeito, então, às perdas por lixiviação. O magnésio é fornecido sob a forma de íons Mg++ pelo sistema de troca do solo. O magnésio, como o nitrogênio, é parte da clorofila e sua deficiência aparece com um amarelecimento entre as nervuras das folhas mais velhas.
A forma disponível é a Mg++ adsorvida aos colóides do solo. Pela troca de cátions, o íon Mg++ passa para a solução do solo.

Enxofre (S):

O enxofre contido na atmosfera é uma das maiores fontes deste nutriente. As deficiência de enxofre são parecidas com as do nitrogênio – folhas amarelo-pálido. O enxofre faz parte das proteínas e é absorvido em grandes quantidades.
No solo, a maior fonte de enxofre é a matéria orgânica e no íon (SO4‾) contido no sistema de trocas do solo.
O enxofre é absorvido pelas plantas na forma (SO4‾) altamente sujeita às perdas por lixiviação.