Mostrando postagens com marcador denitrificação. Mostrar todas as postagens
Mostrando postagens com marcador denitrificação. Mostrar todas as postagens

terça-feira, 23 de janeiro de 2018

Fertilidade do Solo: Lembretes


Os solos dos cerrados possuem alta acidez e teores baixos de Ca e Mg. Na camada arável há uma pobreza de bases e altos teores de H e Al. Nesta condição, as plantas apresentam problemas no seu desenvolvimento, pois o sistema radicular formado é pouco desenvolvido e suas raízes absorvem menos água e nutrientes. Ocorre, então, baixas produtividade. A calagem, neste caso, torna-se um imperativo, pois além de corrigir a acidez, ela adiciona ao solo Ca e Mg. A preferência seria por um

terça-feira, 12 de maio de 2015

Sem "Tolerância Zero" para as Perdas de NPK no Solo

 

É Possível Tolerância Zero para as perdas de Nutrientes no solo?


É impossível adotar-se uma "tolerância zero" para as perdas dos nutrientes aplicados através das adubações. Mas, é possível minimizá-las manejando as quantidades recomendadas pela análise do solo, conforme as condições do solo, do clima, etc. O certo é manejar as aplicações dos fertilizantes levando em conta a fertilidade do solo e as reais necessidades de cada cultura. Cada cultura tem uma necessidade diferente em termos de NPK. Portanto, a recomendação de fazer uma análise de solo antes de plantar. Conhecer o solo, sua fertilidade, seu conteúdo em

terça-feira, 14 de abril de 2015

Os Vegetais Absorvem P2O5 e K2O ?


Esta é uma pergunta que muitos leitores fazem ou por quê os fertilizantes exprimem nas suas garantias que possuem tanto por cento de fósforo na forma de P2O5 ou tanto por cento de potássio na forma de K2O. Ora os fertilizantes não contêm P2O5 nem K2O. Por outro lado, a planta não absorve fósforo na forma de P2O5, nem potássio na forma de K2O. A legislação brasileira é quem usa P2O5 e K2O como uma forma de expressar as garantias destes nutrientes. É apenas do ponto de vista comercial. Na maior parte dos fertilizantes fosfatados, o fósforo se encontra na forma de fosfato de cálcio e fosfato de amônio, entretanto, no solo, as raízes das plantas absorvem o fósforo na forma de ortofosfatos, H2PO4- e HPO4²-, de acordo com o pH

terça-feira, 11 de maio de 2010

As Reações dos Fertilizantes Nitrogenados e o Solo

A principal ideia quando se aplicam fertilizantes é que eles vão adicionar nutrientes ao solo e que este, através das raízes, proverá a planta dos nutrientes necessários ao seu desenvolvimento vegetativo e à produção de grãos. Entretanto, quando aplicamos fertilizantes, inúmeras reações ocorrem entre os seus compostos e o solo. No caso dos fertilizantes nitrogenados, as reações mais importantes serão descritas a seguir:

quinta-feira, 6 de maio de 2010

As Formas de Absorção de Nitrogênio pelas Plantas

As plantas usam duas formas de absorção de nitrogênio (N): o "nítrico - NO3-" e o "amoniacal - NH4+". A preferência é pela forma nítrica.
As vantagens e desvantagens de ambas formas são as seguintes:

quinta-feira, 6 de agosto de 2009

As perdas de óxido nitroso para a atmosfera

A aplicação de fertilizantes nitrogenados, o nitrogênio dos resíduos de animais, a fixação biológica em maior escala devido o aumento da área cultivada com leguminosas, têm contribuído para o aumento na emissão de N2O- na atmosfera. Estas emissões são devidas à desnitrificação cujo processo é NO3- >NO2- >2NO- > N2O- >N2. As formas 2NO- > N2O- >N2O- >N2. são formas gasosas perdidas para atmosfera. Em 1989, dados da FAO, com metodologia do IPCC, apontavam as emissões diretas de N2O- a partir de solos agrícolas estimadas em 2,5 Tg N, as emissões de animais de pastoreio em 1,6 Tg N, e as emissões indiretas em 1,9 Tg N - N2O-.
Tg N = teragrama de N = 10¹² g de N
A agricultura tem sido responsável pelas perdas de carbono do solo. Contribui para isto os processos de erosão e compactação do solo motivado pela aração excessiva, gradagem, desmatamento e consequente redução dos teores de matéria orgânica. A maneira de repor as perdas de carbono seria através do reflorestamento, fruticultura, cultivos de seringueira, castanhas, cacau, pastagem com melhor manejo, conservação do solo e melhor uso de fertilizantes químicos e adubações orgânicas. As emissões de N2O- na atmosfera chega a ser 10 vezes mais na cultura do milho do que na cultura do feijão. A uréia apresenta as mais elevadas emissões de N2O para a atmosfera em relação ao sulfato de amônio que são menores. As maiores emissões foram encontradas logo após a aplicação dos fertilizantes. Estudos mostraram que isto dura até três dias.
O nitrogênio na forma nítrica é perdido mais rapidamente pela desnitrificação do que o N amoniacal. A forma amoniacal tem que ser hidrolisada e a amônia formada é nitrificada e depois desnitrificada. A irrigação do solo, logo após a aplicação da uréia, pode aprofundar a mesma e reduzir as perdas por volatilização da amônia. Mas lixiviaria a parte nítrica adicionada. O sulfato de amônio, pelas suas características ácidas, foi o fertilizante que apresentou menos emissões de N2O- para o ar.

segunda-feira, 27 de julho de 2009

Eficiência dos Fertilizantes - Parte I - perdas de Nitrogênio

Nesta Parte I vamos comentar os diversos processos que se verificam com aplicação do nitrogênio no solo e as perdas deste nutriente para que no final da Parte II (fósforo mais potássio) tenhamos os índices de aproveitamento médio dos fertilizantes NPK.



Nitrificação: é um processo biológico pela ação de bactérias, em condições aeróbias e presença do N amoniacal. É a oxidação da amônia em nitratos com a formação intermediária de nitritos.
As nitrossomonas oxidam o N-NH4 para o N-NO2 (nitrito)
As nitrobacter oxidam o nitrito para N-NOOs íons de hidrogênio (H) contribuem para a acidificação do solo quando da aplicação de N amoniacal porque a nitrificação tem um efeito acidificante. Isto requer a aplicação de 2 kg de carbonato de cálcio para neutralizar a acidez de 1 kg de N-amoniacal.. O sulfato de amônio, cujo N está na forma amoniacal, necessita mais carbonato, ou seja 5 kg por causa da presença do íon sulfato. Solos bem aerados, temperaturas amenas e um pH ao redor de 6,5 ou mais favorecem a nitrificação. Em solos com baixa capacidade de troca de cátions (CTC) as aplicações de N amoniacal deve ser feita em temperaturas muito baixas. A nitrificação pára à temperatura de zero grau. Enquanto o N amoniacal ficar adsorvido aos colóides do solo, não se perde N por lavagem. Na nitrificação, os íons NO3 serão usados na denitrificação.

Denitrificação: é o processo de redução biológica do N mineral até N2. Ocorre tanto em solos com baixo suprimento de oxigênio (O2) como em solos bem drenados. É o final do ciclo do nitrogênio. O N2 fixado do ar, por via industrial ou biológica, é devolvido à atmosfera sob condições aeróbias, sendo N2O o intermediário nesse processo. Até 1980 a denitrificação era considerada a principal fonte de N2O. Mas a nitrificação também é uma fonte de N2O. Solos inundados, condições anaeróbias, temperaturas médias, relação C/N alta, grande população de bactérias favorecem a denitrificação quando o oxigênio está faltando. Apenas o N-NO3 pode ser denitrificado. O N-NH4 não pode ser e por este motivo é que se usa nitrogênio na forma amoniacal em solos cultivados com arroz irrigado. Nos solos alagados existem duas camadas: uma superficial oxidada e uma reduzida ou anaeróbica. A difusão do NH4 da camada anaeróbica para a camada aeróbica é um mecanismo de perda de N em solos alagados. O NH4 se desloca para a superfície do solo onde é nitrificado e o NO3 retorna à camada anaeróbica onde é denitrificado. O maior produto da denitrificação é o nitrogênio elementar (N2) que constitui quase 90% do produto.

Volatilização do N: quando a uréia é aplicada ao solo, em poucos dias, ela é hidrolisa por meio da enzima urease e inicia-se o processo de perda de amônia. A urease é produzida por fungos, bactérias e actinomicetos. Há formação de carbonato de amônio que se desdobra em (NH3), gás carbônico (CO2) e água. Parte do NH3 reage com os íons H+, presentes na solução do solo, resultando em NH4+. Os íons H+ dissociáveis no complexo coloidal também reagem com o NH3. A hidrólise ocorre em vários teores de umidade e quanto mais rápida ela for maior serão as perdas de NH3. Por outro lado, a medida que aumenta o pH do solo, aumenta a volatilização de NH3. No caso de uréia aplicada em cobertura, as perdas podem atingir de 50 a 80% do total de N aplicado. A uréia, bastante usada em adubação de cobertura, pelo alto teor de nitrogênio e pelo menor custo de sua unidade, tem grandes perdas por volatilização, o que compromete a sua eficiência agronômica. Principalmente em solos com baixa CTC, cobertos com palhada, baixa umidade e temperaturas altas.

Lixiviação: é um grande problema pois acarreta perdas de nutrintes pela percolação da água, da zona das raízes para as áreas mais profundas do solo tornando-os indisponíveis para as plantas. A lixiviação depende, em maior ou menor grau, da textura, estrutura, profundidade e porosidade do solo.. Os solos que apresentam alta capacidade de troca de cátions (CTC) são menos suscetíveis à lixiviação, pois os cátions estão firmemente adsorvidos aos coloides. A medida que aumenta o pH do solo, aumenta a CTC e maior número de cargas positivas para adsorver os cátions do solo. Em condições normais, apenas 5% do N do solo se encontra sob a forma de íons NH4 (amônio) e NO3 (nitrato). O nitrato, por ser um íon muito móvel no solo e baixa energia de adsorção aos coloides, é facilmente perdido por lixiviação. Trabalhos de pesquisa têm demonstrado que as perdas de N por lixiviação são maiores no sistema de plantio direto do que no sistema convencional. Isto porque no sistema de plantio direto há uma maior infiltração de água devido à melhoria na estrutura do solo ocasionada pelas coberturas vegetais. Quando se aplica uréia no solo, ela é hidrolisada pois o NH3 com a água forma NH4 e libera oxidrilas (OH-) conforme a reação:
NH3 + H2O = NH4 + OH-
O cátion NH4 é adsorvido ao solo (adorção) como acontece com os outros cátions. Esta adsorção é reponsável pela resistência do N amoniacal à lavagem. A liberação de OH- é responsável pelo aumento do pH do solo. À medida que se verifica a nitrificação o pH cai rapidamente.

Queima da palhada: quando a queima da palhada é realizada, verifica-se perdas de nutrientes por volatilização do nitrogênio na forma elementar e do enxofre (S) na forma de óxido (SO2).

Para acessar o artigo Eficiência dos fertilizantes - Parte 2 - fósforo e potássio  (clique aqui)

quinta-feira, 23 de julho de 2009

Cana-de-açúcar - Nutrientes e adubação (2)

Na Parte I tivemos a oportunidade de comentar a extração e exportação de nutrientes do colmo e folhas da cana-de-açúcar, a importância dos mesmos, as deficiências dos macros e micronutrientes, a necessidade da correção do solo.
Cana-de-açúcar - Nutrientes e adubação (Parte 1)

A recomendação de calcário para a cana planta, no Estado de São Paulo, baseia-se na percentagem de saturação por bases (V%).
NC = (V2 - V1) T / PRNT, onde
V2 = % saturação por bases que se quer atingir (60%)
V1 = % saturação por bases conforme análise do solo
T = capacidade de troca de cátions em cmolc/dm³
NC = necessidade de calcário em t/ha
Para quem não se lembra:
T = S + (H+Al) em cmolc/dm³
S = Ca+Mg+K em cmolc/dm³
1 cmolc/dm³ = 10 mmolc/dm³
Por exemplo: V1 = 12% ; V2 = 60% ; T = 15 cmolc/dm³ ; PRNT = 80, logo
NC = (60-27) x 15 / 80 = 6, 18 t/ha

Vitti & Mazza apresentam uma fórmula para o cálculo da necessidade de calagem (NC) levando em consideração os resultados das amostras colhidas de 0-20 cm e de 20-40 cm.
NC = (V2-V1)CTC¹ + (V2-V1)CTC² / PRNT
CTC¹ = T¹ = capacidade de troca de cátions da camada de solo de 0-20 cm
CTC² = T² = capacidade de troca de cátions da camada 20-40 cm
Nesta fórmula, a NC t/ha seria a quantidade de calcário para aplicar na camada de 0-40 cm de solo.Luz & Martins, citados por Vitti, apresentam a seguinte fórmula para a cana planta.
NC = (V2-V1)CTC¹ /PRNT + 1/2(V2-V1)CTC² /PRNT
A NC encontrada em t/ha é para a incorporação do calcário na camada de 0-40 cm.
A COPERSUCAR, recomenda para solos arenosos a seguinte fórmula para encontrar a NC.
NC = 3 - (Ca+Mg) x 100 / PRNT
NC = t/ha para a camada de 0-20 cm.
Na cana soca, Vitti & Mazza indicam a seguinte fórmula para calcular a necessidade de calagem.
NC t/ha = (V2-V1)T / PRNT . A dose máxima deve ser de 3 t/ha.Na fabricação do superfosfato simples, há uma grande produção de um subproduto - o gesso ou sulfato de cálcio dihidratado. O gesso é mais solúvel e mais móvel que o calcário e fornece nutrientes como o Ca e S para as plantas, corrige áreas sódicas e é um ótimo condicionador para estercos reduzindo as perdas de N por volatilização. Na correção das áreas sódicas, o Ca do gesso substitui o sódio (Na) adsorvido à argila com formação de sulfato de sódio que é móvel no solo. Por ser mais solúvel que o calcário, o gesso corrige a acidez do solo mais rapidamente além de liberar cálcio para absorção pelas plantas e desenvolver o sistema radicular com grandes benefícios para os cultivos. O gesso pode ser utilizado nas áreas de depósito da vinhaça as quais apresentam excesso de potássio. Neste caso, haverá formação de sulfato de potássio que é bastante móvel no perfil do solo. A aplicação e incorporação do gesso, com irrigação, promove uma substituição do potássio (K) adsorvido aos coloides do solo pelo cálcio (Ca) contido no subproduto. O gesso deve ser usado quando a amostragem de 20-40 cm apresentar teores de Ca menor que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, alumínio (Al) maior que 0,5 cmolc/dm³ ou 5,0 mmolc/dm³, saturação por alumínio (m%) maior que 30% e saturação por bases (V%) menor que 35%. No cálculo da necessidade de gesso busca-se atingir V2 = 50%. na camada de 20-40 cm.
NG = (V2-V1)T / 100  
NG (t/ha) = (50-V1).T / 100
Os valores V1, T são os encontrados nos resultados de análise das amostras colhidas na profundidade de 20-40 cm.A fosfatagem é uma prática que proporciona maiores volumes de P no solo, mas o problema é a maior fixação. Esta prática promove um melhor desenvolvimento radicular das plantas com melhor absorção dos nutrientes e da água do solo. Pelo desenvolvimento, as raízes vão mais longe, explorando um maior volume de solo, encontrando nutrientes e água para suportar melhor os períodos de estiagem. Os produtores devem buscar as recomendações de um técnico quanto às necessidades e quantidades de fósforo nos canaviais.
Na adubação verde preferir sempre uma leguminosa devido a fixação do nitrogênio do ar pelas bactérias fixadoras que vivem em simbiose nas raízes. Isto faz com que a adubação nitrogenada seja dispensada. A utilização da adubação verde assegura um melhor controle e menor perdas de solo carregado de nutrientes, pela erosão. A incidência de ervas daninhas é diminuída.
Quanto à adubação orgânica, os dois principais resíduos orgânicos da cana-de-açúcar são a torta de filtro e a vinhaça. A torta de filtro é rica em P2O5 e CaO e é utilizada na cana planta, em toda a área, nas dosagens de 30 a 60 t/ha. A torta substitui, total ou parcialmente, a adubação fosfatada, sempre procurando verificar a dosagem de P2O5 recomendada.
A vinhaça é empregada na cana soca fornecendo todo o K2O e parte de N. O restante do N deve ser aplicado em cobertura através dos adubos nitrogenados existentes no mercado.
Quanto à adubação de plantio, deve ser processada através da análise do solo. No sulco usa-se P e K. O nitrogênio (N) é aplicado na dose de 30 a 40 kg/ha. Se foi feita a rotação de culturas com uma leguminosa, dispensa-se o uso deste nutriente. A ureia aplicada em solos cobertos por palhada provoca perdas elevadas de N por volatilização de 50 a 94%. A chuva ou a irrigação com vinhaça pode reduzir esta taxa, pois arrastam o fertilizante para as profundidades do solo diminuindo a volatilização. O sulfato de amônio não sofre grandes perdas por volatilização mas a desnitrificação se faz presente. Quanta à palhada, as altas relações C/N, C/P e C/S indicam uma baixa de nutrientes N, P e S, e a planta responderá à adubação nitrogenada.
Vitti recomenda em solos com menos de 25% de argila, usar 100 a 150 kg/ha de P2O5 em toda a área e 100 kg/ha de P2O5 no sulco de plantio. Já em solos arenosos, aplicar 100 kg/ha de K2O no sulco de plantio e o restante em cobertura.
Na adubação da cana soca, para cada tonelada de colmos esperada, aplicar a dose de 1 kg/ha de N. Se a produção esperada é de 100 toneladas de colmos, aplicar 100 kg/ha de N. Quanto ao K, aplicar quantidades de acordo com a produção esperada e conforme os teores do nutriente nas amostragens de solos das soqueiras. Manter a relação N:K2O de 1:1 ou 1:1,5.

quinta-feira, 25 de junho de 2009

As formas de nitrogênio - nítrico e amoniacal

As plantas utilizam duas formas de nitrogênio: o nítrico (NO3-) e o amoniacal (NH4+). O nítrico é a forma mais comum de absorção. Encontramos processos de nitrificação e denitrificação.

Nitrificação: é a conversão do nitrogênio amoniacal em nítrico pela ação de bactérias :

O nitrogênio nítrico que pode ser tóxico, para algumas plantas, existe apenas durante um período curto de tempo. Os íons H+ contribuem para acidificar o solo resultante da aplicação de nitrogênio amoniacal. A nitrificação tem um efeito acidificante. Dizem que para cada quilo de N amoniacal aplicado são necessários 2 quilos de calcário. O sulfato de amónio exige 5 quilos devido à presença do íon sulfato. Em temperaturas baixas a nitrificação é lenta e pára a zero grau.

Denitrificação: é o inverso da nitrificação. Sob condições de solo inundado ou anaeróbias algumas bactéria utilizam o N do nitrato com a mesma finalidade do oxigênio.

Apenas o N nítrico pode ser denitrificado. O N amoniacal nunca. Por isto deve-se usar nas lavouras de arroz irrigado, somente o N amoniacal. O maior produto da denitrificação é o N elementar que constitui quase 90% do produto. O pH alto, temperaturas mornas, população alta de bactérias favorece a denitrificação. Em solos inundados é comum as plantas apresentarem um amarelecimento das folhas. Neste caso, deve-se fazer uma reposição de N, quando o solo secar, para repor as perdas de nitrogênio.

N nítrico (NO3-) É a forma carregada negativamente:
1. esta forma não é rapidamente absorvida pelo solo e por isto é facilmente percolada;
2. em solos encharcados sofre a denitrificação perdendo N para o ar na forma de gás;
3. é a forma mais usada pelas plantas em grande quantidades;
4. é fixada pelos microorganismos.

N amoniacal (NH4+) É a forma carregada positivamente:
1. facilmente absorvido pelo solo. Sofre muito pouco com a percolação;
2. acima de 10 ºC é nitrificado facilmente passando para NO3;
3. pode sofrer fixação por alguns minerais tornando-se não disponível;
4. no solos alcalinos pode formar amônia que é perdida para o ar;
5. é prendido pelos microorganismos do solo.

Perdas de N do solo. Pode ser tanto o N do solo como o proveniente de fertilizantes:
1. perdas por erosão. A terra carrega o nutriente por estar preso a sedimentos;
2. perdas de nitratos na solução do solo por corrimento superficial ou por percolação;
3. perdas por denitrificação - solos alagados, encharcados;
4. por volatilização da amônia - solos alcalinos