Mostrando postagens com marcador fósforo. Mostrar todas as postagens
Mostrando postagens com marcador fósforo. Mostrar todas as postagens

terça-feira, 21 de julho de 2009

Formas de aplicação do Fósforo

Dos três nutrientes NPK aplicados no solo, o fósforo (P) é aproveitado pelas plantas em menor quantidade. Entretanto, nas formulações de adubos, o fósforo é o que apresenta o teor mais elevado. Exemplo: 05-30-15; 10-30-10; 08-24-12. Isto se deve ao fato de que, no solo, o fósforo é fixado pela acidez e pela presença dos íons Fe e Al forma compostos insolúveis de ferro e alumínio que não são aproveitáveis para as plantas. Estima-se de que do fósforo aplicado no solo, a planta aproveita de 15 a 25%. Daí, a necessidade de ser feita uma calagem prévia para corrigir a acidez do solo criando condições melhores para a disponibilidade do fósforo para as plantas. Nos solos naturais dos cerrados, o fósforo é o principal fator limitante da produtividade. Os superfosfatos, simples ou triplo, quando são aplicados no solo, todo o fósforo é retido na fase sólida dando origem a compostos pouco solúveis. Entretanto, uma parte deste fósforo é absorvida pelas plantas. O fósforo é pouco móvel no solo e chega até a planta por difusão. Quando os fosfatos solúveis em água são aplicados, a reação é rápida e mantém a solução do solo saturada de P ao redor do grânulo do adubo. Isto cria um gradiente de concentração fazendo com que a água se movimente até a sua direção, e existe uma difusão da solução das regiões mais concentradas para as menos concentradas. Isto garante soluções com fósforo suficiente para atender à absorção pelas plantas através das raízes. Uma alternativa para melhorar este quadro é o produtor aplicá-los de maneira correta. As formas de aplicação mais utilizadas são: no sulco, na cova, em faixas, a lanço, na superfície com ou sem incorporação.
A aplicação localizada tem uma série de vantagens:
1. aplicação de doses menores do que a usada a lanço;
2. em virtude da menor área de contato, a fixação do fósforo também é menor;
3. os grânulos dos adubos fosfatados ficam ao alcance das raízes quando as plantas estão desenvolvendo o sistema radicular;
4. para quem é arrendatário a aplicação localizada é mais econômica porque diminui os custos do uso de fertilizantes. A aplicação em toda a área, no intuito de aumentar a fertilidade, beneficia somente o proprietário.
Por sua vez, a aplicação a lanço permite, também, uma série de vantagens:
a. ela permite a aplicação de doses elevadas de fósforo, como no caso da correção do solo (fosfatagem) elevando a produtividade das culturas;
b. a aplicação a lanço e depois a incorporação promovem um maior desenvolvimento do sistema radicular da planta que facilita uma melhor absorção dos nutrientes e a busca por água;
c. nas pastagens formadas, a única maneira de aplicar o fósforo é a lanço.
Entretanto, em solos de baixa fertilidade a aplicação antecipada do fósforo parece não ser recomendada. Em lavouras de primeiro ano, pior ainda. Resultados de pesquisa mostram que, nestes solos, o melhor é aplicar na linha de semeadura. Nos solos que se faz a fosfatagem, pode-se aplicar o fósforo a lanço, no momento da correção, e depois fazer as adubações de manutenção aplicando-o no sulco.
Surge uma interrogação. A aplicação a lanço, pala maior área de contato, não aumentaria a fixação do fósforo?. Existe um trabalho de Souza e Volkweiss onde o volume de solo que entra em contato com o grânulo de fertilizante fosfatado foi estimado. Dose de 200 kg/ha de P2O5, aplicada a lanço, com grânulos de 2, 4, 6 mm, o volume de solo ocupado com fósforo foi de 25, 15 e 9%, respectivamente
Há recomendações de que nos cerrados, as doses de P2O5 superiores a 100 kg/ha devem ser aplicadas a lanço. Nas doses inferiores, a recomendação é para aplicação em sulco.
Em pastagens estabelecidas, os fosfatos solúveis em água podem ser lançados em cobertura. Souza e outro, mostraram que a aplicação de dosagens de fósforo de 30 kg/ha, a cada dois anos, permitiram uma maior produtividade dos pastos de 98 a 110%. Isto foi benéfico no aumento da quantidade de matéria seca.
No sistema de plantio direto, o comportamento do fósforo é diferente porque não houve um revolvimento do solo e isto diminui o contato entre os íons de P e os coloides do solo. A fixação do fósforo é amenizada. A mineralização lenta da matéria orgânica promove a liberação de formas orgânicas de fósforo, diminuindo a fixação do mesmo. Devido a maior decomposição da matéria orgânica, são liberadas cargas negativas orgânicas que sequestram as cargas positivas, como Fe e Al, diminuindo o processo de fixação do fósforo. Se conclui, então, que a adoção de práticas para aumentar os níveis de matéria orgânica promovem um benefício para um maior aproveitamento do fósforo pelas plantas. Por isto, o aproveitamento do fósforo aplicado em áreas de plantio direto é maior do que aquele aplicado em áreas convencionais. No plantio direto, como o fósforo é pouco móvel no solo, verifica-se uma maior concentração entre 0-5 cm de solo. Porém, as raízes das plantas encarregam-se de distribuir o fósforo à camadas mais profundas aumentando a disponibilidade

segunda-feira, 6 de julho de 2009

O arroz e feijão irrigados

Das fontes de nitrogênio (N) usadas na adubação de arroz e feijão irrigados, nos cerrados, não houve diferenças significativas entre a aplicação de uréia e sulfato de amônio. A uréia, por sua maior concentração de N (45%) leva vantagens do ponto de vista econômico, ou seja, custo/benefício. O custo do kg de N é muito mais barato na uréia. Para se calcular o custo do kg do nutriente contido num determinado produto segue-se as seguintes etapas:
1ª Etapa: devemos conhecer o custo de cada produto colocado na propriedade;
2ª Etapa: devemos conhecer as garantias do nutriente em cada produto, lembrando que o teor expresso do nutriente em porcentagem (%) significa para 100 kg. Por exemplo: a uréia está com uma garantia de 45% de N. Isto significa que em 100 kg de produto teremos 45 kg de N. Em 1 tonelada de uréia, isto é, 1.000 kg teremos 450 kg de N.
Por sua vez, o sulfato de amônio está sendo vendido com uma garantia de 20% de N. Em 100 kg teremos 20 kg de N. Em 1.000 kg teremos 200 kg de N;
3ª Etapa: devemos saber quanto custa a uréa e o sulfato de amônio colocado na propriedade do cliente, ou seja, preço CIF;
4ª Etapa: para saber o custo da unidade de N dos dois produtos, basta dividir o preço da tonelada de cada produto pela respectiva quantidade de N contido nestes 1.000 kg.
kg N = preço tonelada produto / quantidade de N na tonelada.
Deve-se levar em conta na adubação nitrogenada, o histórico da área, ou seja a cutura precedente, sua quantidade de biomassa e sua relação C/N
. No caso da cultura precedente seja uma gramínea, as exigências de nitrogênio serão bem maiores do que se fosse uma leguminosa. As gramíneas têm uma relação C/N maior. As leguminosas têm a capacidade de fixar o nitrogênio do ar através de bactérias do gênero risóbio que vivem em simbiose com as raízes das plantas. As leguminosas têm uma relação C/N menor e com isto podem disponibilizar mais N para a cultura posterior. Por isto é que se busca que a cultura antecedente ao plantio de lavouras de arroz e feijão irrigados seja uma leguminosa.
Quanto ao fósforo e potássio basear-se nas recomendações dos laboratórios e orgãos de pesquisa a fim de suprir o solo com as doses adequadas que garantam alcançar as produtividades esperadas. A análise do solo é importante para indicar os teores destes nutrientes no solo e ser base para a reposição dos mesmos buscando um perfeito desenvolvimento da cultura.
Devido ao baixo teor natural dos micronutrientes, nos solos de cerrados, é importante, na adubação, a inclusão dos mesmos e não pode ser esquecida. O importante é prevenir antes o aparecimento de deficiências destes micronutrientes. Uma análise de solo vai nos dar condições de verificar a fertilidade destes solos e suprir as deficiências naturais de maneira correta.
O arroz tolera mais a acidez do solo. Mas isto não quer dizer que devemos dispensar a aplicação de corretivos. Pelo contrário, o cálcario dolomítico é importante como fonte de cálcio (Ca) e magnésio (Mg). A correção da acidez de maneira inadequada tem contribuido para a redução dos micronutrientes. As deficiências de zinco (Zn) e ferro (Fe) são as mais comuns em arroz quando plantado após feijão e soja. O calcário aplicado em excesso eleva o pH do solo tornando menor a disponibilidade dos micronutrientes. "A medida que aumenta o pH diminui a disponibilidade dos micronutrientes". Recomenda-se a aplicação de calcário para manter o pH na faixa de 5,8 - 6,0 para culturas precedentes como milho, soja, feijão que são exigentes em Ca e Mg.
Para maior resistência às doenças, como a bruzone, está sendo estudada a aplicação de silício (Si) na forma de silicatos. Além de diminuir o grau de severidade da doença tem proporcionado aumento no crescimento da planta.

segunda-feira, 15 de junho de 2009

A importância do trio NPK

O nitrogênio (N) é um dos componentes dos aminoácidos ocupando o centro das moléculas de proteínas. Faz parte, também, da clorofila. Junto com o magnésio (Mg) são os únicos componentes da clorofila, que provém do solo. O nitrogênio (N) é o responsável pelo desenvolvimento vegetativo. Um suprimento generoso de N ocasiona um crescimento vigoroso da planta. Este nutriente tem um papel importante na divisão celular. Se a divisão celular diminuir de velocidade ou mesmo parar, o mesmo acontecerá com o número de folhas verdes expostas à luz solar. E, é óbvio, a planta com uma menor área foliar irá produzir menos. A adubação com nitrogênio (N) é importante pois melhora a qualidade dos grãos, aumenta a produtividade e o teor de proteína. Quando o nitrogênio é aplicado em excesso e a planta não consegue aproveitá-lo totalmente, ela acumula este nutriente sob forma não protéica. O acúmulo pode levar a uma intoxicação de N nítrico (NO3-) principalmente em plantas jovens ou aquelas que estão sofrendo com uma seca ou em solos deficientes de fósforo e potássio. A deficiência de nitrogênio, como acontece com a de magnésio, provoca uma clorose ou amarelecimento das folhas. É o sinal do baixo contéudo de clorofila.
O fósforo (P) apesar de ser aproveitado em pequenas quantidades pela planta, ele não pode faltar ou ser deficiente no solo pois prejudica o crescimento da cultura. Como o nitrogênio, ele é importante na divisão celular. Na fotossíntese, ele tem uma função vital, tanto na utilização dos açúcares quanto do amido. Este nutriente apresenta uma grande mobilidade dentro da planta. Em casos de deficiência, ele migra dos tecidos velhos para os novos. As plantas jovens absorvem o fósforo muito rápidamente. Em níveis adequados de fósforo, as raízes têm um crescimento rápido e intenso. Dizem que quando a planta atingiu 25% de sua altura total, ela já consumiu 78% do fósforo que ela necessita. Isto caracteriza a real necessidade de suprir a planta com quantidades adequadas de fósforo, principalmente nas culturas de ciclo curto. As temperaturas baixas do solo reduzem a absorção de fósforo. A presença de nitrogênio amoniacal (NH3+) aumenta a absorção do fósforo favorecendo o desenvolvimento do sistema radicular. A deficiência de fósforo se caracteriza por um avermelhamento das folhas e do talo, quando as plantinhas tem menos de 30 cm de altura, como é no caso do milho. Dizemos que o milho está "roxo de fome". Quando a absorção de fósforo é menor que as necessidades, verifica-se um acúmulo de açúcar nos tecidos das plantas favorecendo a formação de um pigmento chamado antocianina que dá o colorido às folhas. Mas devemos tomar cuidado quando atribuir o avermelhamento à deficiência de fósforo. A baixa temperatura, os estragos causados por insetos às raízes e às folhas, ação dos ventos e do granizo, e danos às raízes, são responsáveis pela planta apresentar um avermelhamento das folhas. É importante as análises do solo e foliar para determinar se a deficiência é relativa ao fósforo.
O potássio (K) é também importante para as plantas. Ele se desloca no interior da planta na forma de cátion positivo (K+). Embora as culturas exijam grandes quantidades de K, a solução do solo pode apresentar pequenas quantidades. Por isto, a necessidade de uma liberação constante do íon K+ para a solução do solo. O potássio trocável, que se encontra ligado à partículas minerais, vai para a solução do solo pela troca de cátions. A regeneração do potássio se dá a partir de formas de potássio não trocável da fração de solo. O potássio não forma compostos, como fazem o nitrogênio e o fósforo. Ele age livremente no interior da planta. Ele é importante para a formação de frutos de qualidade e resistência das plantas ao frio e às doenças. Ele age na translocação do açúcar e é necessário para a formação de aminoácidos e proteínas. Plantas bem supridas de potássio resistem mais ao murchamento. Plantas mal supridas de potássio, não resistem ao acamamento. Caules fracos ocorrem quando o nível de nitrogênio é alto e o do potássio é baixo.

segunda-feira, 18 de maio de 2009

Os Fosfatos perante à Legislação Brasileira

A Legislação Brasileira determina que a garantia do fósforo deve ser avaliada nos seguintes extratores químicos:
Fosfatos Acidulados e parcialmente Acidulados – Citrato neutro de amônio (CNA) + água, e os teores solúveis em água e total para os parcialmente acidulados quando comercializados isoladamente;
Misturas que contenham fosfatos acidulados ou parcialmente acidulados – citrato neutro de amônio (CNA) + água e facultativo o teor solúvel em água;
Fosfato Naturais, Fosfatos Naturais Reativos, Escórias, Termofosfatos e Farinha de Ossos – o teor total de fósforo e o teor solúvel em ácido cítrico a 2% relação 1:100; No caso dos Fosfatos Naturais Reativos pode ser indicada o teor de fósforo solúvel em ácido fórmico a 2% relação 1:100 desde que o teor de fósforo solúvel encontrado neste extrator (ácido fórmico) seja igual ou maior que 55% do fósforo total do produto.
Misturas que contenham fosfato natural, fosfato natural reativo, escórias e farinha de ossos - teor total de fósforo somente em misturas de natureza física pó ou farelada; fósforo solúvel em ácido cítrico 2% na relação 1:100 e teor de fósforo solúvel em água ou informação de que o fósforo é insolúvel em água;
Misturas que contenham termofosfatos – teor total somente quando em misturas de natureza física pó ou farelada; teor solúvel de fósforo em ácido cítrico a 2% relação 1:100 ou teor de fósforo solúvel em citrato neutro de amônio (CNA) + água.
O fósforo é avaliado na forma de P2O5. No caso do ácido cítrico a 2%, a relação 1:100, quer dizer 1 gramo de produto para 100 ml de ácido. Um avanço da Legislação de Fertilizantes foi permitir a indicação da solubilidade em ácido fórmico 2% 1:100 para os fosfatos naturais reativos. Isto era uma antiga aspiração dos que defendiam os fosfatos naturais reativos.

O mercado comum europeu utiliza o ácido fórmico há anos pois dizem que é o único extrator para diferenciar os fosfatos naturais reativos dos fosfatos de baixa reatividade desde que 55% do seu fósforo total seja solúvel no ácido fórmico 2% 1:100. E estão corretos pois pesquisas realizadas no Brasil confirmam este fato, como vejamos: dos fosfatos naturais, na ilustração acima, o único que poderia ser comercializado no Mercado Comum Europeu seria o fosfato natural de Gafsa – pois no teste realizado por Catani e Nascimento, 94,6% do fósforo total do Gafsa é solúvel no ácido fórmico 2% 1:100. Os fosfatos naturais brasileiros são de baixa reatividade e não servem para aplicação direta na agricultura mas podem ser utilizados pelas indústrias onde sofrerão tratamentos químicos que os tornarão solúveis em água.

terça-feira, 5 de maio de 2009

O Ciclo dos Fosfatos Naturais

Os fosfatos naturais reativos, sedimentares, amorfos e micropulverizados podem ser aplicados diretamente no solo pois apresentam uma eficiência agronômica muito boa. Para ser um fosfato reativo deve ter no mínimo 55% do seu fósforo total solúvel no ácido fórmico 2% relação 1:100.
No solo, os fosfatos naturais reativos apresentam o seguinte ciclo:

  1. o fósforo (P) do fosfato natural reativo encontra-se na forma tricálcica é solubilizado de modo imediato, progressivo e constante, permitindo às plantas uma disponibilidade permanente de fósforo nas quantidades necessárias e durante todo o ciclo da planta. Nos fosfatos acidulados ou solúveis em água (supersimples e supertriplo) a disponibilidade do fósforo é total e por um curto período. Em 1989, o departamento químico da extinta Companhia Riograndense de Adubos - CRA, sob a liderança do Eng° Químico F. Mottola realizou um teste com o HIPERFOSFATO (fosfato natural de alta reatividade, importado da África do Norte - GAFSA) tratando um gramo do produto com ácido cítrico a 2% 1:300 e a quantidade de fósforo extraída foi 12%. Trataram novamente o resíduo com o mesmo extrator e, novamente, obteram 12% e assim sucessivamente. Com os fosfatos naturais brasileiros obteram na 1a. extração 6 -7% e nas seguintes praticamente nada de fósforo. Nos fosfatos naturais reativos a solubilidade, no solo, é realizada: pela acidez livre do solo (H+); ação dos ácidos orgânicos sintetizados pelos microorganismos na mineralização da matéria orgânica; pelas secreções ácidas das raízes. Nas pontas das raízes exite sempre uma zona ácida que provoca a solubilização do fósforo do fosfato natural reativo; ação do CO2 do ar do solo; quando sofrem um rigoroso processo de moagem ou seja, moídos a um grau elevado de finura e devido a sua natureza branda, os fosfatos naturais altamente reativos não tem similar; Ocorre, também, o processo de fixação, mas bem menor que àquele sofrido pelos fosfatos solúveis em água, pois as quantidades disponíveis de fósforo são bem menores durante um mesmo período. A solubilização dos fosfatos naturais altamente reativos é constante;
  2. parte do fósforo disponível é absorvida pelas plantas e outra pelos microorganismos (fósforo imobilizado);
  3. a pequena parte do fósforo fixado voltará a tornar-se disponível pela ação dos ácidos orgânicos do solo, pela acidez livre (H+), pelas secreções ácidas das raízes e pelo CO2 do ar do solo;
  4. o fósforo imobilizado pode tornar-se novamente disponível pela mineralização da matéria orgânica.
Compare os ciclos dos fosfatos acidulados (texto já postado) com este dos fosfatos naturais reativos. Quando indico fosfatos naturais para serem aplicados diretamente na agricultura refiro-me aos REATIVOS.

segunda-feira, 4 de maio de 2009

Como Calcular kg/ha de Adubo para Elevar o P do Solo?

O solo apresenta um teor de fósforo (P) de 4 mg/dm³ e queremos elevar este nível para 12 mg/dm³, através de uma adubação corretiva de fósforo utilizando um fertilizante fosfatado, o superfosfato triplo que apresenta uma garantia mínima (pela legislação Brasileira de Fertilizantes) de 41% de P2O5. Qual a dose deste fertilizante a ser aplicada por hectare ?

Sabemos que as plantas aproveitam, em média, 15 a 25% do fósforo aplicado no solo. O restante é fixado dependendo de cada tipo de solo, cultura e manejo. Vamos usar uma média de 20% de fósforo assimilável pela planta.
Se queremos elevar o teor de fósforo do solo para 12 mg/dm3, existe um déficit de 8 mg/dm³ (12-4).

1º Passo:
Sabemos que kg/ha = mg/dm³ x 2
Então, 8 mg/dm³ de P x 2 = 16 kg de P/ha.

2º Passo:
Transformar P em P2O5.
Usemos os pesos atômicos de cada elemento: (arredondando)
P2O5 = (31 x 2) + (16 x 5) = 62 + 80 = 142

Em 142 kg P2O5 temos ..... 62 P
................X ........................ 1 P
X = 1 x 142 / 62 = 2,29


Portanto P x 2,29 =P2O5

Logo, 16 x 2,29 = 36,66 kg/ha de P2O5
As necessidades para elevar de 4 para 12 mg/dm³ de P são de 36,66 kg/ha de P2O5
Como 20% do P2O5 é aproveitado, a necessidade real será:

36,66 kg P2O5....... 20%
........X ..................100%
X = 100 x 36,66 / 20 = 183,3 kg/ha de P2O5
Para que a planta assimile os 36,66 kg/ha de P2O5 são necessários colocar no solo 183,3 kg/ha de P2O5.
100 kg Superfosfato triplo ......... 41 kg de P2O5
..............X .................................. 183,3 kg P2O5

X = 183,3 x 100 / 41 = 447 kg/ha de superfosfato triplo

quarta-feira, 29 de abril de 2009

Os Nutrientes das Plantas (2) - O Fósforo (P)

Na publicação "Os Nutrientes das plantas (1) , abordamos sobre o nitrogênio (N) e o potássio (K) que junto com o fósforo (P) são os chamados macronutrientes primários, os quais as plantas precisam em maior quantidade. São os componentes dos adubos NPK
Dos três macronutrientes primários exigidos pelas plantas, o fósforo é absorvido em pequenas quantidades. Mas sua presença no solo é indispensável para o crescimento e produção de grãos e frutos. O fósforo é importante para a realização da fotossíntese.
O fósforo, na planta, apresenta uma grande mobilidade. Em casos de deficiência, o fósforo tem a propriedade de mover-se dos tecidos velhos para os mais novos.
A qualidade e o amadurecimento precoce de grãos e frutos estão relacionados com uma adequada nutrição de fósforo.
As plantas jovens absorvem o fósforo mais rapidamente o que permite um crescimento rápido e intenso das raízes em ambientes com níveis adequados do nutriente. Afirma-se que quando as plantas atingirem 25% da altura total, elas já armazenaram 78% de suas necessidades totais em fósforo.
Isto explica porque deve haver um suprimento adequado de fósforo no momento que as plantas começam a germinar, particularmente em plantas de ciclo curto.
Os fertilizantes fosfatados, sob a forma solúvel em água, reagem no solo com o ferro, alumínio, argilas, matéria orgânica, formando compostos insolúveis não aproveitáveis pelas plantas. Por isto, uma cultura aproveita apenas 15 a 25% do fósforo aplicado como fertilizante.
Isto explica o porquê das fórmulas de fertilizantes (NPK) apresentarem o teor relacionado ao fósforo em maior quantidade se as plantas exigem pequenas quantidades deste nutriente. Por exemplo: a fórmula 5-30-25 é um adubo NPK contendo 5% de nitrogênio (N), 30% de fósforo (P) e 15% de potássio (K). Nesta fórmula, o maior nutriente em quantidade é o fósforo (P=30).
Por que? Como vimos as plantas aproveitam de 15 a 25% do fósforo aplicado no solo. Portanto, a necessidade de se utilizar fórmulas com altas concentrações de fósforo para liberar aquela quantidade que a planta necessita para o seu desenvolvimento até a maturação. O restante do fósforo que foi fixado no solo será liberado com aplicações de calcário (calagem).
No solo, o fósforo é pouco móvel pois é firmemente retido não sofrendo com a percolação. Mesmo em campos irrigados, a água de drenagem apresenta valores de fósforo que não excedem a 1 mg/dm3. Sendo assim, as perdas de fósforo por percolação são desprezíveis. Entretanto, a erosão é a responsável pelas maiores perdas de fósforo. Na erosão, verifica-se perdas de matéria orgânica e partículas coloidais com fósforo.
Os fertilizantes fosfatados solúveis em água apresentam uma solubilidade alta. Isto se explica o conceito de que somente os fosfatados solúveis em água são aproveitados pelas plantas. Por causa desta solubilidade, o fósforo move-se a pequenas distâncias a partir do ponto de aplicação. Assim sendo, o volume de solo enriquecido com fósforo é pequeno. Isto tende a ser menor quando se faz uma aplicação nos sulcos do que quando se aplica em cobertura total.
No solo, o fósforo encontra-se nas formas de fixado, imobilizado, adsorvido e disponível.

1. FIXADO – é aquela forma de fósforo mineral que se encontra combinada a outros elementos como cálcio, ferro e alumínio, formando compostos não assimiláveis pelas plantas. Esta fixação depende das condições inerentes a cada solo e pode ocorrer com maior ou menor intensidade.

2. IMOBILIZADO – é aquela forma de fósforo que se apresenta na fórmula orgânica não assimilável pelas plantas. Este fósforo torna-se disponível para a planta pela mineralização da matéria orgânica.

3. ADSORVIDO – é aquela fração de fósforo que se encontra preso ao complexo coloidal do solo tornando-se disponível através de trocas com as raízes.

4. ASSIMILÁVEL – é aquela parte de fósforo que se encontra diluído na solução do solo sendo facilmente absorvido pelas plantas.

FÓSFORO DISPONÍVEL = FÓSFORO ADSORVIDO + FÓSFORO ASSIMILÁVEL

A ilustração acima nos mostra que:
1. O fosfato solúvel em água em contato com a solução do solo, solubiliza-se tornando-se imediata e totalmente disponível. Parte deste fósforo fica diluído na solução do solo e parte fica adsorvido ao complexo coloidal (argilas), por troca iônicas com OH‾;
2. Nossos solos sendo ácidos apresentam elevados teores de ferro, e alumínio e outras bases e, portanto, grande parte do fósforo disponível é fixada, formando compostos de ferro e alumínio insolúveis;
3. Parte do fósforo disponível é absorvida pelos vegetais e pelos microorganismos do solo para obterem a energia para viverem. Temos, então, o fósforo imobilizado;
4. O fósforo fixado poderá voltar a ser disponível pela ação dos ácidos orgânicos provenientes da mineralização da matéria orgânica, pela acidez livre do solo (H+), pelas secreções ácidas das raízes e pelo gás carbônico do ar do solo;
5. Com a morte dos microorganismos do solo e dos restos de culturas, o fósforo imobilizado pode tornar-se, novamente, disponível para as plantas pelo processo de mineralização da matéria orgânica.

O número de microorganismos no solo é grande. Apenas em 1 grama de solo encontramos de milhares a milhões de fungos, bactérias, algas e protozoários, etc...
Nesta ação de desdobramento da matéria orgânica do solo pelos microorganismos, resultam ácidos fracos ( acético, cítrico, fórmico e outros) os quais podem solubilizar as formas de fósforo fixado. Parte do fósforo é aproveitado pelos microorganismos e parte fica disponível na solução do solo para ser absorvida pelas plantas ou ser novamente fixada.

RETROGRADAÇÃO DO FÓSFORO:
Em solos com altos teores de cálcio (Ca) sob a forma livre de carbonato de cálcio, pela retrogradação, o fósforo do adubo é convertido em fosfato tricálcico que não é aproveitado pela planta. É uma forma semelhante à da rocha fosfatada. Entretanto na retrogradação o fósforo não fica perdido, mas torna-se disponível lentamente para as plantas.

FIXAÇÃO DE FÓSFORO:
É um problema sério que ocorre nos solos ácidos. O fósforo é fixado pelo ferro e pelo alumínio. O fósforo torna-se indisponível para as plantas. A aplicação de calcário é uma maneira de melhorar esta indisponibilidade. Os íons (OH‾) gerados pelo cálcario tomam o lugar dos íons de fósforo fixado liberando-os para a solução do solo. Este é um dos maiores benefícios indiretos da calagem.
A reação com as argilas, principalmente aquelas com relação 1:1 (1 sílica: 1 alumínio) – as caulinitas, é outra maneira de fixação do fósforo.
O oxigênio (aeração) é necessário para o crescimento das plantas e para a absorção dos nutrientes. Também é importante na decomposição da matéria orgânica do solo que é uma das fontes de fósforo. A compactação reduz a aeração e o espaço poroso das raízes. Isto reduz a absorção de fósforo e, consequentemente, afeta o crescimento das plantas. A compactação impede, também, as raízes de ocuparem uma maior área de solo pela penetração, limitando o acesso aos nutrientes.
O aumento da umidade até níveis ótimos faz com que o fósforo fique mais disponível. Entretanto, o excesso de umidade reduz a aeração.
Temperaturas adequadas facilitam a decomposição da matéria orgânica. Mas quando elas são muito altas ou muito baixas, limitam a absorção de fósforo.

O fósforo é absorvido pelas plantas sob a forma de ânions H2PO4‾ e HPO4²‾. A mais comum é a H2PO4‾ .