terça-feira, 18 de agosto de 2009

Adubação Foliar - Parte I

No Brasil, os solos são variados de região para região o que resulta na deficiência de vários macros e micronutrientes importantíssimos para o desenvolvimento da planta. Estas deficiências podem ser agravadas pela aplicação de um nutriente que acentua ou induz a deficiência de outros. Por exemplo:
O excesso de cobre (Cu) afeta a disponibilidade de ferro (Fe).
O ferro e o manganês (Mn) ou o zinco (Zn) e o ferro são antagônicos um do outro.
O fósforo (P) em alto teor induz a deficiência de zinco.
O potássio (K) e o cálcio (Ca) em altos teores diminuem a absorção de boro (B).
Cobre e zinco, o cobre diminui a absorção de zinco.
Todavia a aplicação de um nutriente aumenta, em geral, a utilização e absorção de outros. Por exemplo:
Nitrogênio (N) – favorece a absorção dos micronutrientes. Zinco com nitrogênio aumentarão as concentrações de zinco nas folhas novas.
Magnésio (Mg) – em altos níveis favorece a absorção de fósforo.
Fósforo (P) – em altos níveis favorece a absorção de molibdênio (Mo).
Isto tudo parece complicar o diagnóstico e correção de deficiências. Por isto, torna-se necessário as análises de solo e planta

Quando usar o adubo foliar
1 – correção de deficiências – é uma maneira rápida, eficaz e os adubos foliares podem ser empregados, praticamente, em todas as culturas. Quando é detectada a deficiência, lança-se mão da adubação foliar que permite corrigir de maneira rápida o nutriente ou nutrientes que estão em falta para a planta;
2 – complementação da adubação via solo – usando macros e micros, sendo uma parte no solo. Os macronutrientes são aplicados via solo enquanto os micronutrientes são via foliar. As aplicações foliares são feitas em diferentes estágios de desenvolvimento da planta.
Cultivos anuais: na fase de crescimento usa-se nitrogênio (N)+fósforo (P). Na floração, usa-se fósforo (P). Na frutificação, usa-se o potássio (K);
3 – suplementação no estágio reprodutivo – no final do ciclo da planta a atividade das raízes diminui e há uma translocação de nutrientes das folhas para os grãos e frutos. A suplementar pode ser realizada mesmo que a planta não acuse deficiências ou mesmo depois do nutriente aplicado ao solo.
Os adubos foliares devem ser compatíveis com defensivos e fertilizantes. Os quelatos oferecem uma maior estabilidade, reduzem os riscos de fitotoxidez e melhoram a absorção dos nutrientes pelas folhas. Não formam depósitos ou precipitados ou ambos no fundo das embalagens. Os foliares utilizados corretamente, juntamente com a adubação no solo, proporcionam consideráveis aumentos de produção das culturas. Isto assegura uma maior eficiência dos adubos que disponibilizam o nutriente de acordo com o estágio de desenvolvimento da cultura. Além disto, as perdas de nutrientes são minimizadas. Os fertilizantes, simples ou em misturas, não fornecem todos os nutrientes que as plantas precisam para o seu crescimento e produção. Os micronutrientes, apesar de serem exigidos em pequenas quantidades, são indispensáveis ao desenvolvimento da planta e consequentemente a sua produtividade. Quem quer altas produções, eles não podem faltar no planejamento da adubação.
A adubação foliar tem a finalidade de fornecer às plantas os nutrientes que ela necessita, prontamente disponíveis, para corrigir as deficiências, sendo uma complementação da adubação aplicada ao solo, visando assegurar o desenvolvimento das plantas e as maior produtividade. Na adubação foliar utiliza-se, principalmente, os micronutrientes necessários para um desenvolvimento e produção das plantas. Diz-se que os micronutrientes empregados via solo não têm uma eficácia igual quando aplicados via foliar. Outra vantagem da adubação foliar é a aplicação do nutriente na hora que a planta o necessita. A “Lei do Mínimo” de Liebig, explica muito bem isto. A produção da planta é em função do menor teor do nutriente disponível para ela. Se dos 13 elementos que necessita e que são essenciais para a planta, se o zinco (Zn) estiver limitante, a produção vai ser limitada pelo zinco. Podem os outros nutrientes terem grandes quantidades, mas se um deles for limitante, a produção será de acordo com a limitada pelo nutriente em menor quantidade. Corrigindo-se a deficiência, a produção aumenta até encontrar outro nutriente em quantidade limitante. O uso da adubação foliar começou no século passado.
Na Parte II, abordaremos mais sobre a Adubação Foliar, vantagens e benefícios, aplicações e incompatibilidade. Para visualizar a Parte II, clique no link abaixo:
Adubação Foliar - Parte II  (clique aqui)

quinta-feira, 13 de agosto de 2009

Necessidade de Gessagem - Parte II

Na Parte I da pulblicação "Necessidade de Gessagem", abordamos sobre o gesso agrícola, seus benefícios, quando aplicá-lo e fórmulas para calcular a necessidade de gessagem e quantidade de gesso.
Necessidade de gessagem - Parte I clique aqui

Quando aplicar

O bom é no período chuvoso, pois facilita que o gesso se dissolva e atinja as camadas abaixo dos primeiros 20 cm. É nestas camadas profundas que irá propiciar o maior desenvolvimento radicular, como no cafeeiro, e reduzir a toxidez do alumínio. Quando há necessidade de se aplicar o gesso a lanço ou incorporação de maneira imediata, pode-se lançar mão da irrigação.
No café, o gesso proporciona um aumento de produção de sacas de café beneficiado que compensa o custo de aquisição e de aplicação. São necessárias de 3 a 4 t/ha. O efeito residual do gesso é grande e na dosagem de 4 t/ha atinge até 10 anos. Mas o importante é observar que o gesso deve ser aplicado conforme o recomendado pela análise do solo. Alguns cafeicultores insistem em aplicar o gesso agrícola em altas dosagens sem fazer a análise do solo. Aqueles que aplicam o gesso sem levar em conta a recomendação podem obter aumentos de produções até um certo ponto. À medida que se aumenta a dosagem, os rendimentos vão aumentando, mas não de maneira proporcional, até um momento que eles não compensam os gastos com aquisição e aplicação do produto. Os rendimentos podem até diminuir. Isto é ocasionado pelo desequilíbrio de cátions no solo. Doses elevadas de gesso ocasionam perdas de potássio (K) e magnésio (Mg) por lixiviação.
Outras aplicações do gesso agrícola
O gesso agrícola pode ser usado em solos sódicos, pois o cálcio substitui o sódio (Na) no complexo de troca formando o sulfato de sódio que é lixiviado. O cálcio é mais fortemente retido pelo solo do que o sódio.
O gesso pode ser usado, também, no processo de compostagem para reduzir as perdas de nitrogênio (N).
Um solo arenoso, com baixa CTC e pequena capacidade de adsorver sulfato, a movimentação de bases seria maior que aquela para um solo argiloso com alta CTC e alta adsorção de sulfato. É neste tipo de solo, onde o potencial de movimentação de bases é elevado, que o produtor deve ter o cuidado com a quantidade de gesso aplicado para evitar uma movimentação além das camadas exploradas pelo sistema radicular. Uma amostragem de solo deve ser feita periodicamente para acompanhar a movimentação de bases para evitar uma drástica movimentação para camadas mais profundas longe da área das raízes.
O gesso é uma fonte de enxofre (S). O uso de fertilizantes concentrados é uma das causas para o aparecimento de deficiências de S. Na produção de fertilizantes concentrados, com altos teores de N, P e K, utilizam-se, basicamente, matérias-primas que possuem pouco ou nenhum S. Outra causa é o baixo consumo de fertilizantes simples, como os sulfatos de amônio e de potássio, os quais contêm alto teor de enxofre.
O aumento da produtividade das culturas extrai nutrientes do solo e que não são repostos na sua totalidade ou pelos cultivos sucessivos sem reposição do que foi exportado.
O manejo inadequado do solo ocasiona uma diminuição no teor de matéria orgânica. Os solos com bom teor de matéria orgânica apresentam bons índices de enxofre.
As leguminosas têm uma exigência de 40 kg/ha de S, enquanto as gramíneas pedem 15-30 kg/ha de S. As espécies das famílias das crucíferas são as mais exigentes chegando a 80 kg/ha de S.
Para corrigir as deficiências de S, são recomendados de 100 a 250 kg/ha de gesso agrícola.

terça-feira, 11 de agosto de 2009

O Milho Bt

Os insetos atacam o milho tanto na lavoura como no depósito onde os grãos são armazenados. E, ao se alimentarem do milho, eles causam ferimentos que são uma porta aberta para os fungos que crescem no interior dos grãos, desde que as condições de temperatura e umidade sejam favoráveis. Estas infecções produzem um grande número de "esporos" que ao se liberarem irão infectar mais grãos. No seu crescimento, os fungos desenvolvem "micotoxinas" que destróem os tecidos vegetais. As micotoxinas causam danos ao sistema nervoso e respiratório dos animais que as consomem e podem causar a morte. As micotoxinas mais importantes são as fumonisinas no milho, as aflatoxinas no milho e no amendoim, os tricotecenos no trigo e as ocratoxinas no café.
O milho transgênico Bt produz uma proteína que é tóxica para determinados insetos. O milho Bt possui variedades que produzem diferentes toxinas que têm ação contra as lagartas das folhas e outras contra as larvas do besouro do caule. Estas lagartas produzem grandes perdas na agricultura o que obriga os produtores de milho a lançarem mão do uso de agrotóxicos. O milho Bt é uma alternativa para a redução ou eliminação do uso de inseticidas. Além da redução dos custos da lavoura há uma diminuição dos riscos à saúde humana. Apesar de ser tóxica, esta proteína é inócua para insetos que não se alimentam de milho, fungos, bactérias, animais e seres humanos. Ela exige condições específicas que são encontradas no aparelho digestivo de certos insetos, ou seja a presença de "receptores celulares". Estas toxinas são originadas de uma bactéria chamada Bacillus thuringiensis (Bt). Existem inseticidas naturais que contém esta bactéria. São usados com muita segurança.
Qual a diferença de uma planta Bt e de um inseticida Bt ?
A diferença é que na planta Bt o produto fica disponível apenas para os insetos que consomem a planta e no inseticida Bt outros insetos podem ser afetados. O inseticida Bt usa a "bactéria viva". Logo, a planta Bt, ou seja o uso do milho Bt é mais seguro que o inseticida natural.
Na produção de milho Bt são introduzidos genes de Bacillus thuringiensis que possui diversas famílias de genes que produzem toxinas. Uma destas famílias de genes é chamada "Cry" presente em um grande número de variedades de milho transgênico. Ela mata os insetos que consomem as folhas de milho.
O mais importante é que as características nutricionais de milho Bt e do convencional são equivalentes. O milho Bt vem sendo consumido em diversos países, por uma década, sem registro de ocorrência de problemas. Somente após rigorosas pesquisas é que uma variedade de milho Bt é liberada para o plantio e consumo humano.
O milho Bt-11 é geneticamente modificado, através da tecnologia de DNA recombinante, resistente a insetos e tolerante a herbicidas. O Bt-11 contém a proteína Cry1ab isolada da bactéria Bacillus thuringiensis e a proteína herbicida fosfinotricina acetil transferase isolada da bactéria Streptomyces virido chromogenes.

segunda-feira, 10 de agosto de 2009

Necessidade de Gessagem - Parte I

Os solos brasileiros, em geral, apresentam baixos teores de cálcio (Ca) e altos teores de alumínio (Al) trocável. Isto ocorre, com ênfase, nas camadas mais profundas. Desta maneira, o desenvolvimento radicular é superficial e aí concentrado. Disto ocorre que as plantas sofrem com os veranicos e a absorção de nutrientes é limitada à área de desenvolvimento das raízes. Comparando plantas que tiveram um aporte de gesso na camada de 20-40cm e 30-60cm elas tiveram um desenvolvimento de raízes em área e em profundidade. Nas profundidades subsuperficiais a concentração de raízes chegou a 29% e nas camadas mais profundas, ainda, a concentração de raízes foi de 19 a 12%. Já as plantas que não tiveram um aporte de gesso agrícola, a concentração de raízes foi maior na camada de até 20 cm. Nas camadas mais profundas de 40-60 cm, a concentração de raízes chegou a 1%.
Benjamin Franklin foi um líder fazendeiro e tentou aumentar a produção e qualidade das plantas. Tornou-se muito conhecido, nesta área, por ter aplicado sulfato de cálcio (gesso) em uma colina perto de Filadélfia. Ele escreveu as palavras: “Esta terra foi corrigida com gesso”.
O gesso é um subproduto das indústrias de fertilizantes. Para a obtenção do ácido fosfórico, as rochas fosfatadas são atacadas pelo ácido sulfúrico e desta reação são obtidos o sulfato de cálcio (gesso) e o ácido fluorídrico. Tratando-se a rocha fosfatada com uma quantidade maior de ácido sulfúrico, obtém-se ácido fosfórico e sulfato de cálcio (gesso) sólido em suspensão. O sulfato de cálcio é separado por filtração, originando uma grande quantidade de gesso como subproduto. Por tonelada de ácido fosfórico produzida, obtém-se quase 5 (cinco) toneladas de gesso.
Como o cálcio é pouco móvel no solo e quase nenhuma mobilidade na planta, o efeito da calagem não se observa nas camadas mais profundas. Mas o nutriente cálcio é importante para a planta. No café, as raízes vão atrás do cálcio e nos locais que ele não existe não haverá crescimento das mesmas. Por outro lado, o alumínio (Al³+), que é tóxico para as plantas quando em altas concentrações, está presente nas camadas mais profundas onde o calcário não consegue atingi-las. Desta maneira, altos teores de alumínio e baixos teores de cálcio nas camadas mais profundas não favorecem o desenvolvimento radicular e, assim, as raízes não conseguem buscar água e nutrientes.
O gesso agrícola, sulfato de cálcio, contém cálcio e enxofre (S). Contém 32% de CaO e até 19% de S. Ele se dissocia em Ca²+ e SO4²-. Mas o gesso não é um corretivo para neutralizar a acidez do solo. Tão pouco tem a capacidade de elevar a “Capacidade de Troca de Cátions – CTC”. Ele é um condicionador do solo.
Os benefícios do gesso agrícola são vários.
Entre eles:
1) o ânion SO4²- imprime uma maior mobilidade ao cálcio levando-o para as camadas mais profundas;
2) por sua vez, o íon sulfato se liga ao alumínio formando um sal, o sulfato de alumínio (AlSO4) , que é menos tóxico para a planta;
3) fornece cálcio e enxofre para as plantas.

Quando aplicar o gesso agrícola
O gesso deve ser aplicado quando, no mínimo, uma destas condições seja satisfeita:
a) teor de cálcio (Ca) menor ou igual a 0,4 cmolc/dm³ ou 4 mmolc/dm³. Para transformar cmolc em mmolc basta multiplicar por 10;
b) teor de alumínio (Al) maior que 0,5 cmolc/dm³ ou 5 mmolc/dm³;
c) saturação por alumínio (m%) maior que 30%. Alguns citam 20%.
O produtor agrícola pensando em aplicar gesso deve providenciar na análise do solo. Neste caso, a amostragem deve ser feita na profundidade de 20-40 cm ou 30-60 cm e não na de 0-20 cm como é feita normalmente. Lembre-se que para aplicar gesso, os resultados da análise devem ser de amostras retiradas das camadas mais profundas. Quando coletar amostras das camadas de 0-20, 20-40, 30-60 cm é preciso cuidar para não misturá-las. As amostras devem ser independentes de cada camada. Para isto, é bom ter o cuidado de não misturá-las e proceder à identificação de cada camada. Em geral, a profundidade mais usada é a camada de 20-40 cm.

Como calcular a quantidade de gesso agrícola
Existem várias fórmulas apresentadas pelos pesquisadores para calcular a necessidade de gesso. Vamos apresentá-las a seguir.

1) Necessidade de gessagem e quantidade de gesso:
MARTINS, André G. professor da UFV-MG estabelece a seguinte fórmula:
NG (kg/ha) = 0,30 x Necessidade de calcário recomendada para o solo.
IMPORTANTE: a necessidade de calcário é aquela recomendada para a camada de 20-40 cm onde vai ser aplicado o gesso. Esta fórmula tem apenas a importância de calcular a necessidade de gessagem (NG) e não a quantidade de gesso a ser aplicada no solo. Esta última vai ser definida pela fórmula abaixo:
QG (t/ha) = NG x (SC/100) x (PF/20), onde,
QG = quantidade de gesso em t/ha.
NG = necessidade de gessagem em t/ha calculada na fórmula anterior.
SC = superfície coberta pelo gesso (%). Para área total, utiliza-se SC=100% e para aplicação no café em faixas, SC=75%.
PF = espessura da camada onde o gesso deverá agir, em cm. Para camada de 20-40, PF = 20 cm. Para camada de 30-60 cm, PF=30 cm.
O gesso deve ser aplicado após o calcário. O calcário na camada de 0-20 cm e o gesso na camada de 20-40 cm ou 30-60 cm.
O gesso pode ser aplicado em cobertura, pois é muito móvel. Se a camada de 0-20 cm não exige calcário, pode-se aplicar o gesso em cobertura. Não há necessidade de incorporação do gesso. Uma corrente de pesquisadores recomenda aplicar calcário e gesso juntos. Outra corrente não aconselha.

2) Outra fórmula usada no café, leva em consideração o teor de argila das camadas inferiores do solo.NG (kg/ha) = 75 x argila (%), segundo Souza et al (1997). O gesso deve apresentar, no mínimo, 15% de enxofre (S).
3) Outras fórmulas utilizadas são:
Para culturas anuais – DG (kg/ha) = 50 x teor de argila (%) ou DG (kg/ha) = 5,0 x argila (g/kg)
Para culturas perenes – DG (kg/ha) = 75 x argila (%) ou DG (kg/ha) = 7,5 x argila (g/kg)

4) Vitti e Mazza (1998) apresentam a seguinte tabela para quantidade aproximada de gesso levando em consideração os valores T e V do solo.

Para visualizar o artigo "Necessidade de Gessagem - Parte II" ( clique aqui)

quinta-feira, 6 de agosto de 2009

As perdas de óxido nitroso para a atmosfera

A aplicação de fertilizantes nitrogenados, o nitrogênio dos resíduos de animais, a fixação biológica em maior escala devido o aumento da área cultivada com leguminosas, têm contribuído para o aumento na emissão de N2O- na atmosfera. Estas emissões são devidas à desnitrificação cujo processo é NO3- >NO2- >2NO- > N2O- >N2. As formas 2NO- > N2O- >N2O- >N2. são formas gasosas perdidas para atmosfera. Em 1989, dados da FAO, com metodologia do IPCC, apontavam as emissões diretas de N2O- a partir de solos agrícolas estimadas em 2,5 Tg N, as emissões de animais de pastoreio em 1,6 Tg N, e as emissões indiretas em 1,9 Tg N - N2O-.
Tg N = teragrama de N = 10¹² g de N
A agricultura tem sido responsável pelas perdas de carbono do solo. Contribui para isto os processos de erosão e compactação do solo motivado pela aração excessiva, gradagem, desmatamento e consequente redução dos teores de matéria orgânica. A maneira de repor as perdas de carbono seria através do reflorestamento, fruticultura, cultivos de seringueira, castanhas, cacau, pastagem com melhor manejo, conservação do solo e melhor uso de fertilizantes químicos e adubações orgânicas. As emissões de N2O- na atmosfera chega a ser 10 vezes mais na cultura do milho do que na cultura do feijão. A uréia apresenta as mais elevadas emissões de N2O para a atmosfera em relação ao sulfato de amônio que são menores. As maiores emissões foram encontradas logo após a aplicação dos fertilizantes. Estudos mostraram que isto dura até três dias.
O nitrogênio na forma nítrica é perdido mais rapidamente pela desnitrificação do que o N amoniacal. A forma amoniacal tem que ser hidrolisada e a amônia formada é nitrificada e depois desnitrificada. A irrigação do solo, logo após a aplicação da uréia, pode aprofundar a mesma e reduzir as perdas por volatilização da amônia. Mas lixiviaria a parte nítrica adicionada. O sulfato de amônio, pelas suas características ácidas, foi o fertilizante que apresentou menos emissões de N2O- para o ar.

terça-feira, 4 de agosto de 2009

Hortaliças - Cálculo da adubação recomendada

As hortaliças são exigentes em nutrientes os quais devem estar disponíveis no solo. São plantas que esgotam o solo pois toda ela é colhida por inteiro. As adubações nitrogenadas contribuem para reacidificar o solo. Por isto, torna-se necessário um controle desta acidez através de análises de solos mais frequentes. A reaplicação do calcário é indispensável quando o pH do solo for menor que 6,0 e/ou V% menor que 80. A preferência deve ser para um calcário dolomítico que contém cálcio (Ca) e magnésio (Mg) e incorporado na profundidade de 20 cm de solo. A adubação pode ser feita em toda a área ou em sulcos. Para calcular a quantidade de adubo utiliza-se fórmulas conforme abaixo:

Cálculo da quantidade em g/m²: as recomendações de adubos são feitas em kg/ha. Para transformar em g/m² basta dividir a dose recomendada por 10.
Exemplo: 600 kg/ha de adubo 8-24-12 ; 600/10 = 60 g/m²
200 kg/ha de P2O5 = 200/10 = 20 g/m²
150 kg/ha de K2O = 150/10 = 15 g/m²

Cálculo para o plantio em camalhões: a adubação é feita em sulcos antes da confecção dos camalhões. Neste caso, transforma-se a recomendação de kg/ha para g/m linear de sulco. A fórmula é a seguinte:
g/m linear de sulco = (kg/ha*e) / 10
e
= espaçamento entre camalhões, em metro
Exemplo: 600 kg/ha de 8-24-12; espaçamento (e) entre sulcos: 0,80 metro
g/m linear de sulco = (600 x 0,80) / 10 = 4,8 g/m linear.

segunda-feira, 3 de agosto de 2009

A importância de conhecer a CTC do Solo

O solo é constituído de três fases: sólida, líquida e gasosa. A sólida é formada pelas partículas originadas da decomposição de rochas; a líquida seria a água, a solução do solo; a gasosa seria o gás carbônico (CO2) e o oxigênio (O). Os solos foram formados pela ação do vento, chuva, calor, frio, geada que decomporam as rochas (intemperismo). O material resultante desta decomposição sofre interações químicas que resultaram em minerais, ou seja, os nutrientes, cujos íons estão na solução do solo. Óxidos de ferro e de alumínio reagiram com a sílica formando as argilas 2:1 e 1:1. Esta relação expressa sílica:alumínio. As argilas 2:1, são características dos solos temperados enquanto as 1:1, dos solos tropicais. Houve, ainda, formação de silte e areia. O perfil de um solo é formado de horizontes e/ou camadas de diferentes cores de acordo com a presença de ferro hidratado, teores de cálcio, óxido de silício e de matéria orgânica. Em comparação aos solos temperados, os solos tropicais são mais quentes, maior teor de alumínio do que de sílica e capacidade de troca de cátions (CTC) baixa. A decomposição da matéria orgânica é mais rápida. A absorção de água, pelas plantas, é maior. Em solos ácidos e arenosos há maior lixiviação de cátions, principalmente pela CTC e matéria orgânica baixas.
Os cátions estão retidos nos coloides do solo. Eles podem ser substituídos por outros cátions. A fórmula de cálculo refere-se à soma dos íons positivos (cátions) como cálcio (Ca), magnésio (Mg), potássio (K) e sódio (Na) mais os íons hidrogênio (H) e alumínio (Al). Estas cargas positivas são adsorvidas pelas argilas em troca com as cargas elétricas negativas. Portanto, a CTC refere-se à quantidade de cargas negativas. A soma destas cargas elétricas negativas é representada pela CTC e nelas estão ligadas eletricamente os íons de cargas positivas. Lembre-se que os íons de carga elétrica semelhante se repelem e os de carga elétrica diferente se atraem.
Os solos são formados de partículas de argila e matéria orgânica que são os coloides. Estes apresentam cargas negativas predominantemente, se bem que podem apresentar cargas positivas. Por isto é que as partículas atraem os cátions adsorvendo-os na sua superfície. Isto é muito bom porque ao serem adsorvidos pelos coloides, os íons não são tão facilmente carregados pelas águas das chuvas. A planta absorve a água do solo e com ela o nutriente que estava adsorvido. E isto faz com que os coloides, ao perderem íons, atraem novos, estabelecendo-se a troca. A capacidade de um solo trocar seus íons é chamada capacidade de troca catiônica, quando são cátions, e capacidade de troca aniônica, quando são ânions. Conhecer a CTC de um solo é muito importante para elevar a produtividade.
Solos com argila de baixa reatividade, baixo teor de matéria orgânica e baixa CTC não retém cátions. Já solos com argila de alta reatividade apresentam CTC alta e podem reter grandes quantidades de cátions. Solos arenosos apresentam baixo teor de matéria orgânica e baixa CTC e são mais suscetíveis às perdas de nutrientes por lixiviação. Estas características são importantes para definir as doses e épocas de aplicação dos fertilizantes para aumentar a eficiência do adubo.
"O que o solo não pode reter de nutrientes será lixiviado".Origem das cargas negativas:A origem das cargas elétricas negativas podem ser explicadas pelos seguintes aspectos:
1. Rompimento do cristal de argila:Quando isto acontece os grupos (OH)‾ podem ficar expostos e o H+, levemente retido nestes radicais OH, é facilmente trocado por outro cátion.
2. Substituição isomórfica:
Nas argilas tipo 2:1 (as montmorolonitas) alguns Al³+ são substituídos por Mg²+. Resulta, então, uma valência livre de carga elétrica negativa que não sofreu substituição pois o Al é trivalente enquanto o Mg é divalente.
As cargas geradas são permanentes pois não dependem do pH do solo para ocorrerem.
3. Dissociação do grupo OH:Na argila ou na matéria orgânica, a presença de OH nos cristais pode ocasionar a dissociação do H+ havendo formação de uma carga elétrica negativa.
Elevação do pH
Origem das cargas positivas:As cargas positivas, como já vimos, são em número menor que as cargas negativas. A presença de matéria orgânica, que é formada por cargas negativas e dependentes do pH do solo, mantém uma quantidade de cargas negativas na superfície do solo mesmo que exista um grande teor de cargas elétricas positivas. Mas, em certos solos, pode-se encontrar nas camadas superficiais uma predominância de cargas elétricas positivas. Nestes solos, os compostos formados de óxidos e hidróxidos de ferro e alumínio sob condições de pH baixo, verifica-se a "protonação" com a ocorrência de cargas elétricas positivas.

RECOMENDO LER OS ARTIGOS ABAIXO

CTC's efetiva e potencial do solo
Cátions trocáveis e CTC's na análise do solo
Quanto adicionar de K para saturar a CTC do solo
Argilas e níveis de CTC no solo


quinta-feira, 30 de julho de 2009

Eficiência dos Fertilizantes - Parte II - perdas de Fósforo e Potássio

Na postagem Parte I sobre a Eficiência dos Fertilizantes em relação às perdas de nutrientes no solo, comentamos sobre o Nitrogênio: Ciclo do N, processos que ocorrem no solo, perdas do nutriente. Vamos prosseguir, nesta postagem, comentando as perdas de fósforo e o potássio.
Para acessar o artigo Eficiência dos fertilizantes - Parte I - perdas de nitrogênio 
(Clique aqui)

O FÓSFORO:
Dos três macronutrientes primários (NPK) exigidos pelas plantas, o fósforo é absorvido em pequenas quantidades. Mas sua presença no solo é indispensável para o crescimento e produção de grãos e frutos. Afirma-se que quando as plantas atingirem 25% da altura total, elas já armazenaram 78% de suas necessidades totais em fósforo. Isto explica porque deve haver um suprimento adequado de fósforo no momento que as plantas começam a germinar, particularmente em plantas de ciclo curto. Os fertilizantes fosfatados, sob a forma solúvel em água, reagem, no solo, com o ferro, alumínio, argilas, matéria orgânica, formando compostos insolúveis não aproveitáveis pelas plantas. Por isto, uma cultura aproveita apenas 15 a 30% do fósforo aplicado como fertilizante. Isto explica o porquê das fórmulas de fertilizantes (NPK) apresentarem o teor, relacionado ao fósforo, em maior quantidade se as plantas exigem pequenas quantidades deste nutriente. Por exemplo: a fórmula 5-30-25 é um adubo NPK contendo 5% de nitrogênio (N), 30% de fósforo (P) e 15% de potássio (K). Nesta fórmula, o maior nutriente em quantidade é o fósforo (P=30). Por que? Como vimos as plantas aproveitam de 15 a 30% do fósforo aplicado no solo. Portanto, a necessidade de se utilizar fórmulas com altas concentrações de fósforo para liberar aquela quantidade que a planta necessita para o seu desenvolvimento até à maturação. O restante do fósforo que foi fixado no solo será liberado com aplicações de calcário (calagem).

Lavagem do P: no solo, o fósforo é pouco móvel pois é firmemente retido não sofrendo com a percolação. Mesmo em campos irrigados, a água de drenagem apresenta valores de fósforo que não excedem a 1 mg/dm3. Sendo assim, as perdas de fósforo por percolação são desprezíveis.

Erosão: é a responsável pelas maiores perdas de fósforo. Na erosão, verifica-se perdas de matéria orgânica e partículas coloidais com fósforo. Além do fósforo, outros nutrientes, como o nitrogênio e o potássio, sofrem grandes perdas pelo carregamento do solo onde estão contidos.

Fósforo fixado: – é aquela forma de fósforo mineral que se encontra combinada a outros elementos como cálcio, ferro e alumínio, formando compostos não assimiláveis pelas plantas. Esta fixação depende das condições inerentes a cada solo e pode ocorrer com maior ou menor intensidade. É um problema muito sério em solos ácidos. A calagem é uma das formas de minimizar a fixação. Os íons OH, gerados pela reação do calcário no solo, ocupam o lugar dos íons de P liberando o nutriente para a solução do solo. As argilas, do tipo caulinitas, com relação 1:1 (sílica e alumínio) contribuem para a fixação do fósforo. A taxa de recuperação do P pelas culturas é baixa (15 a 30%).
Fósforo imobilizado: é aquela forma de fósforo que se apresenta na fórmula orgânica não assimilável pelas plantas. Este fósforo torna-se disponível para a planta pela mineralização da matéria orgânica.
Fósforo adsorvido: é aquela fração de fósforo que se encontra preso ao complexo coloidal do solo tornando-se disponível através de trocas com as raízes.
Fósforo assimilável:– é aquela parte de fósforo que se encontra diluído na solução do solo sendo facilmente absorvida pelas plantas.
Fósforo disponível  =  fósforo adsorvido  +  fósforo assimilável
CICLO DOS FOSFATOS SOLÚVEIS


1. O fosfato solúvel em água em contato com a solução do solo, solubiliza-se tornando-se imediata e totalmente disponível. Parte deste fósforo fica diluído na solução do solo e parte fica adsorvido ao complexo coloidal (argilas), por troca iônicas com OH-;
2. Nossos solos sendo ácidos apresentam elevados teores de ferro, e alumínio e outras bases e, portanto, grande parte do fósforo disponível é fixada, formando compostos de ferro e alumínio insolúveis;
3. Parte do fósforo disponível é absorvida pelos vegetais e pelos microorganismos do solo para obterem a energia para viverem. Temos, então, o fósforo imobilizado;
4. O fósforo fixado poderá voltar a ser disponível pela ação dos ácidos orgânicos provenientes da mineralização da matéria orgânica e pela acidez livre do solo (H+), pelas secreções ácidas das raízes e pelo gás carbônico do ar do solo;
5. Com a morte dos microorganismos do solo e dos restos de culturas, o fósforo imobilizado pode tornar-se, novamente, disponível para as plantas pelo processo de mineralização da matéria orgânica. O número de microorganismos no solo é grande. Apenas em 1 grama de solo encontramos de milhares a milhões de fungos, bactérias, algas e protozoários, etc...Nesta ação de desdobramento da matéria orgânica do solo pelos microorganismos, resultam ácidos fracos ( acético, cítrico, fórmico e outros) os quais podem solubilizar as formas de fósforo fixado. Parte do fósforo é aproveitado pelos microorganismos e parte fica disponível na solução do solo para ser absorvida pelas plantas ou ser novamente fixada.

Retrogradação do P:

ocorre em solos com alto teores de cálcio (Ca). O fósforo do fertilizante é convertido em fosfato tricálcico de baixa disponibilidade para as plantas. É como se o fósforo do fertilizante voltasse à forma de rocha fosfatada. A indústria de fertilizantes utiliza a rocha fosfatada para a obtenção de superfosfatos (fosfatos acidulados) pelo ataque dos ácidos sulfúrico e fosfórico, com a finalidade de transformar o fósforo insolúvel em fósforo disponível para as plantas. O fósforo retrogrado não é perdido mas sua disponibilidade torna-se lenta.

O POTÁSSIO:
Fixação do K: o potássio (K) não reage no solo como fósforo. O potássio está presente na solução do solo ou adsorvido aos coloides. Nos processos de troca, ele é deslocado das posições de trocas dos colóides do solo e ingressa na solução do solo onde é absorvido pelas plantas. Algumas argilas têm a capacidade de fixar o potássio. Este K fixado pode ser trocado por outros cátions.

Lavagem do K:
na solução do solo o K é móvel e sujeito às perdas por lavagem. Entretanto, como a concentração de K na solução do solo é muito baixa, as perdas por lavagem são muito pequenas. Exceto em solos arenosos e de baixa capacidade de retenção de cátions (CTC), onde elas são maiores.

CONCLUSÃO:
Em função de todos os processos que comentamos nas postagens I e II, de todas as perdas sofridas pelos macronutrientes NPK, foi estimada um percentual de aproveitamento dos nutrientes, com fatores específicos para cada um, conforme quadro abaixo:


Das quantidades ne NPK aplicadas no solo, coloca-se duas vezes mais N, de três a cinco vezes mais P2O5 e 1,5 vezes mais K2O.

terça-feira, 28 de julho de 2009

Interpretação da análise de solos - Exercícios

Suponhamos que um agricultor fez a análise de solo da sua lavoura que apresentou os seguintes resultados:
PH em água – 4,6
Matéria orgânica - 25g/dm³
Ca - 0,7 cmolc/dm³
Mg - 0,3 cmolc/dm³
Al - 1,7 cmolc/dm³
H+ + Al - cmolc/dm³
P - 2 mg/dm³
K - 25 mg/dm³
Argila - 600 g/kg
Areia - 350 g/kg
Silte - 50 g/kg
1. Qual o valor da soma de bases deste solo ?Sabemos que para calcular a soma de bases, usamos a fórmula:
S = Ca + Mg + K
O potássio está expresso em mg/dm³. Deveremos convertê-lo para cmolc/dm³.
Para converter devemos usar os coeficientes abaixo:
mg/dm3 de K x 0,001 = K g/dm³
g K x 2,5582 = K cmolc /dm³
Portanto, chegamos ao resultado abaixo:
25 mg/dm³ de K x 0,001 = 0,025 g de K/dm³
0,025 g K x 2,5582 = 0,06 cmolc de K/dm³
Agora temos todos os dados para o cálculo da Soma de bases deste solo (S). Ou seja, Ca = 0,7 cmolc/dm3, Mg = 0,3 cmolc/dm3 e o K = 0,06 cmolc/dm³
S = 0,7 + 0,3 + 0,06 = 1,06 cmolc/dm³
S = 1,06 cmolc/dm³
" O solo em questão apresenta uma extrema pobreza de nutrientes Ca, Mg, P e H. Além disto tem uma acidez excessiva, médio teor de matéria orgânica e elevado teor de argila".2. Qual a CTC efetiva (t) deste solo ?
t = S + Al3+ t = 1,06 + 1,7 = 2,76 cmolc/dm³
Capacidade efetiva = t = 2,76 cmolc/dm³"A CTC efetiva de 2,76 cmolc/dm3 é baixa. O solo, nestas condições tem baixa capacidade de reter cátions mesmo apresentando 20g/kg de matéria orgânica e 600g/kg de argila. Apesar da alta percentagem de argila, elas devem ser de baixa reatividade possivelmente uma caulinita e/ou óxidos e hidróxidos de ferro e de alumínio. Mesmo nesta condição de 600g/kg de argila, as perdas de nutrientes, por lixiviação, é grande. Estas perdas podem ser minimizadas pela adição de calagem que vai liberar cátions e gerando cargas dependentes de pH".


3. Qual a Percentagem de saturação de Al³+ (m)?m (%) = 100 x Al3+ / t = 100 x 1,7 / 2,76 = 65,6%
Percentagem de saturação de Al³+ (m) = 65,6 %"A percentagem de saturação de alumínio da CTC efetiva significa que 65,5% dos pontos de troca são ocupados pelo alumínio. Nestas condições, o desenvolvimento das plantas sofrerá sérias limitações".4. Qual a CTC a pH 7,0 (T) deste solo ?Na análise da terra em consideração, o teor de (H++ Al) = 5,5 cmolc/dm³.
CTC a pH 7,0 T = S + (H + Al) = 1,06 + 5,5
CTC a pH 7,0 T = 6,56 cmolc/dm³

"A CTC a pH 7,0 confirma a baixa atividade das argilas pois o valor encontrado 6,56 cmolc/dm³ é baixo, embora em relação a CTC efetiva houve um aumento de 137%".5. Qual a percentagem de saturação de bases (V%) da CTC a pH 7,0 ?V% = 100 x S / T V% = 100 x 1,06 / 6,56 = 16,2 %
Percentagem de saturação de bases da CTC a pH 7,0 = V% = 16,2 %

6. Qual a percentagem de saturação de ácidos (M) ?
M% = 100 – V = 100 – 16,2 = 83,8%Percentagem de saturação de ácidos M = 83,8%

segunda-feira, 27 de julho de 2009

Eficiência dos Fertilizantes - Parte I - perdas de Nitrogênio

Nesta Parte I vamos comentar os diversos processos que se verificam com aplicação do nitrogênio no solo e as perdas deste nutriente para que no final da Parte II (fósforo mais potássio) tenhamos os índices de aproveitamento médio dos fertilizantes NPK.



Nitrificação: é um processo biológico pela ação de bactérias, em condições aeróbias e presença do N amoniacal. É a oxidação da amônia em nitratos com a formação intermediária de nitritos.
As nitrossomonas oxidam o N-NH4 para o N-NO2 (nitrito)
As nitrobacter oxidam o nitrito para N-NOOs íons de hidrogênio (H) contribuem para a acidificação do solo quando da aplicação de N amoniacal porque a nitrificação tem um efeito acidificante. Isto requer a aplicação de 2 kg de carbonato de cálcio para neutralizar a acidez de 1 kg de N-amoniacal.. O sulfato de amônio, cujo N está na forma amoniacal, necessita mais carbonato, ou seja 5 kg por causa da presença do íon sulfato. Solos bem aerados, temperaturas amenas e um pH ao redor de 6,5 ou mais favorecem a nitrificação. Em solos com baixa capacidade de troca de cátions (CTC) as aplicações de N amoniacal deve ser feita em temperaturas muito baixas. A nitrificação pára à temperatura de zero grau. Enquanto o N amoniacal ficar adsorvido aos colóides do solo, não se perde N por lavagem. Na nitrificação, os íons NO3 serão usados na denitrificação.

Denitrificação: é o processo de redução biológica do N mineral até N2. Ocorre tanto em solos com baixo suprimento de oxigênio (O2) como em solos bem drenados. É o final do ciclo do nitrogênio. O N2 fixado do ar, por via industrial ou biológica, é devolvido à atmosfera sob condições aeróbias, sendo N2O o intermediário nesse processo. Até 1980 a denitrificação era considerada a principal fonte de N2O. Mas a nitrificação também é uma fonte de N2O. Solos inundados, condições anaeróbias, temperaturas médias, relação C/N alta, grande população de bactérias favorecem a denitrificação quando o oxigênio está faltando. Apenas o N-NO3 pode ser denitrificado. O N-NH4 não pode ser e por este motivo é que se usa nitrogênio na forma amoniacal em solos cultivados com arroz irrigado. Nos solos alagados existem duas camadas: uma superficial oxidada e uma reduzida ou anaeróbica. A difusão do NH4 da camada anaeróbica para a camada aeróbica é um mecanismo de perda de N em solos alagados. O NH4 se desloca para a superfície do solo onde é nitrificado e o NO3 retorna à camada anaeróbica onde é denitrificado. O maior produto da denitrificação é o nitrogênio elementar (N2) que constitui quase 90% do produto.

Volatilização do N: quando a uréia é aplicada ao solo, em poucos dias, ela é hidrolisa por meio da enzima urease e inicia-se o processo de perda de amônia. A urease é produzida por fungos, bactérias e actinomicetos. Há formação de carbonato de amônio que se desdobra em (NH3), gás carbônico (CO2) e água. Parte do NH3 reage com os íons H+, presentes na solução do solo, resultando em NH4+. Os íons H+ dissociáveis no complexo coloidal também reagem com o NH3. A hidrólise ocorre em vários teores de umidade e quanto mais rápida ela for maior serão as perdas de NH3. Por outro lado, a medida que aumenta o pH do solo, aumenta a volatilização de NH3. No caso de uréia aplicada em cobertura, as perdas podem atingir de 50 a 80% do total de N aplicado. A uréia, bastante usada em adubação de cobertura, pelo alto teor de nitrogênio e pelo menor custo de sua unidade, tem grandes perdas por volatilização, o que compromete a sua eficiência agronômica. Principalmente em solos com baixa CTC, cobertos com palhada, baixa umidade e temperaturas altas.

Lixiviação: é um grande problema pois acarreta perdas de nutrintes pela percolação da água, da zona das raízes para as áreas mais profundas do solo tornando-os indisponíveis para as plantas. A lixiviação depende, em maior ou menor grau, da textura, estrutura, profundidade e porosidade do solo.. Os solos que apresentam alta capacidade de troca de cátions (CTC) são menos suscetíveis à lixiviação, pois os cátions estão firmemente adsorvidos aos coloides. A medida que aumenta o pH do solo, aumenta a CTC e maior número de cargas positivas para adsorver os cátions do solo. Em condições normais, apenas 5% do N do solo se encontra sob a forma de íons NH4 (amônio) e NO3 (nitrato). O nitrato, por ser um íon muito móvel no solo e baixa energia de adsorção aos coloides, é facilmente perdido por lixiviação. Trabalhos de pesquisa têm demonstrado que as perdas de N por lixiviação são maiores no sistema de plantio direto do que no sistema convencional. Isto porque no sistema de plantio direto há uma maior infiltração de água devido à melhoria na estrutura do solo ocasionada pelas coberturas vegetais. Quando se aplica uréia no solo, ela é hidrolisada pois o NH3 com a água forma NH4 e libera oxidrilas (OH-) conforme a reação:
NH3 + H2O = NH4 + OH-
O cátion NH4 é adsorvido ao solo (adorção) como acontece com os outros cátions. Esta adsorção é reponsável pela resistência do N amoniacal à lavagem. A liberação de OH- é responsável pelo aumento do pH do solo. À medida que se verifica a nitrificação o pH cai rapidamente.

Queima da palhada: quando a queima da palhada é realizada, verifica-se perdas de nutrientes por volatilização do nitrogênio na forma elementar e do enxofre (S) na forma de óxido (SO2).

Para acessar o artigo Eficiência dos fertilizantes - Parte 2 - fósforo e potássio  (clique aqui)