terça-feira, 15 de setembro de 2009

Adubação do Café

Notícias dão conta que os cafeicultores dos cerrado mineiro diminuíram em 30% a adubação tendo em vista o aumento dos fertilizantes. O produtor que em 2007 pagava de 900 a 1.000,00 por tonelada de adubo, em 2008 teve que desembolsar de 1.500 a 1.600,00 para adquirir a mesma tonelada. Para 2009 a projeção de redução de safra gira entorno de 30%. E isto vai influir nos anos subseqüentes. Na adubação de um hectare de café, o produtor gasta 1,8 t de adubo. Segundo Pierre Vilela, da FAEMG, em 2005, o produtor para comprar uma tonelada de adubo precisava de 2,7 sacas de café. Em 2007, 3 sacas e em 2008, 4,2 sacas.
É claro que a planta adubada corretamente, com as necessidades de nutrientes por ela exigidas, responde com altas produtividades. Por outro lado, altas produtividades exportam mais nutrientes. Então, esta diminuição de 30% no emprego de fertilizantes refletir-se-á na safra e, conseqüentemente, nas safras seguintes chegando a um empobrecimento do solo se outras medidas não forem tomadas. Outros cafeicultores estão reduzindo os custos com fertilizantes usando a palha do café. Esta palha é rica em nitrogênio (N) e potássio (K). Obtém-se cerca de 8% de palha vinda da produção de café. A economia com fertilizantes químicos chega a 10%. Mas sempre é necessária uma análise do solo para aplicar a quantidade correta.
Na adubação do cafezal, o fósforo (P) é o principal nutriente, indispensável durante todo o ciclo da planta. Entretanto, este nutriente, nos solos ácidos sofre com a fixação e se liga ao ferro e alumínio formando compostos insolúveis não aproveitados pelas plantas. Daí a necessidade da calagem para liberar este fósforo tornando-o disponível para a planta. O baixo teor de matéria orgânica contribui, também, porque em condições normais a mineralização da matéria orgânica é importante para liberar fósforo disponível para a planta. Como o fósforo é importante na formação do sistema radicular, dizem que é importante aplicar o fósforo via radicular. Entretanto, como fonte de fósforo, não se usa em sua totalidade o superfosfato simples porque ele contém, além deste nutriente, mais o enxofre. Mas para não onerar os custos, os cafeicultores preferem usar uma fonte alternativa de enxofre (S). O sulfato de amônio é outra fonte de enxofre. Mas este fertilizante acidifica o solo. Os cafezais, na sua maior parte, estão situados em solos ácidos. Além da acidez são carentes em cálcio (Ca) e magnésio (Mg). O uso em grandes quantidades de sulfato de amônio contribui para acidificar mais estes solos. É preciso um equilíbrio. O desequilíbrio pode influir na eficiência dos fertilizantes e diminui consideravelmente a produtividade do cafezal.
No sul de Minas, no período de outubro a março é que a planta aproveita melhor os nutrientes quando a adubação é feita de 3 a 4 vezes. Os adubos nitrogenados que apresentam as maiores perdas por lixiviação devem ser aplicados em intervalos de 40-60 dias. Quanto ao potássio (K), duas aplicações são suficientes. Em solos arenosos, o potássio deve ser parcelado com o nitrogênio. O fósforo pode ser aplicado em uma única vez, como no caso da fosfatagem.

Adubação do PlantioDeve ser feita conforme o resultado da análise do solo. Por exemplo:
Para uma recomendação de 40 g/cova de fósforo e 20 g/cova de potássio temos uma relação 00-40-20. Dividindo-se a relação por 20 teremos uma relação simplificada 0-2-1. Multiplicando por 10, a fórmula encontrada é 00-20-10. A quantidade é encontrada dividindo-se a recomendação de fósforo (40 g) pelo teor do nutriente na fórmula (20) e multiplicando por 100. Chega-se a uma dose de 200 g/cova desta formulação. Adiciona-se até 1 g/cova de boro (B) e até 2 g/cova de zinco.
Conforme o teor de matéria orgânica no solo, aplica-se esterco de curral em L/cova.
Matéria orgânica <> 20 g/kg – 2 L/cova.

PegamentoProcede-se a adubação de cobertura utilizando-se 4 g/planta de N (10 g de uréia) de 2 a 3 aplicações, no período chuvoso. Isto é importante, pois a aplicação em períodos secos, com estiagem, provoca perdas de nitrogênio para o ar. Ou utilizar sulfato de amônio pois as perdas de N são bem menores, mas há o perigo de acidificar o solo pelas reposições continuadas. O adubo é aplicado ao redor da planta a uma distância de 10 cm do caule.

Primeiro ano após o plantioAplicar 6 g/planta de N (15 g de uréia) e mais 4 g/planta de K (7 g de cloreto de potássio por 2 ou 3 vezes, no período chuvoso. Em vez de utilizar os fertilizantes simples (uréia, cloreto de potássio), pode-se utilizar os fertilizantes em misturas. Neste caso, seria utilizada a fórmula 15-00-10 na base de 40 g/planta por aplicação.

Segundo ano e sucessivos
Aplica-se o dobro da recomendação para o primeiro ano. Neste caso, 80 g/planta da fórmula 15-00-10 por aplicação.

Terceiro ano e sucessivos
Seria a adubação de produção. Aqui, mais uma vez, chamo a atenção dos cafeicultores para realizarem a análise do solo e a análise de planta (foliar). A medida que se busca maiores produções de sacas/ha, a necessidade e a reposição de nutrientes aumenta. Existem tabelas de recomendação para os Estados produtores de café. Vamos supor que para uma produção de 50-60 sacas de café por hectare, as necessidades de nutrientes para um solo cuja análise foliar e do solo apresentaram os seguintes resultados:
N nas folhas – 27 g/kg
P – 8 mg/dm³
K – 0,17 cmolc/dm³. Em mmolc/dm³ seria 1,7
A recomendação técnica foi de 160 g/planta de N, 70 g/planta de P2O5 e 140 g/planta de K2O. Temos uma relação 160-70-140. Dividindo ela pelo menor número (70) teremos uma relação simplificada: 2,28-1-2. Multiplicando pelo coeficiente 8 chegamos a uma fórmula 18-8-16. Dividindo a recomendação, por exemplo, N (160) pelo N da fórmula (18) e multiplicando por 100, a dose será de 900 g/planta.
No caso de aplicar fertilizantes simples, as quantidade a serem usadas para os 160 N-70 P2O5-140 K2O seriam: 350 g de uréia, 150 g superfosfato triplo e 230 g de cloreto de potássio.
A adubação nitrogenada deve ser parcelada em 4 vezes e a com potássio em 2 vezes. Entretanto pode-se usar uma fórmula que contenha os dois nutrientes: NK. Ou seja, as necessidades são 160 N e 140 K2O.
Nitrogênio (N): 160 em 4 aplicações – 40 g/planta/aplicação
Potássio (K): 140 em duas aplicações – 70 g/planta/aplicação
Por aplicação temos: 40 N + 70 K2O. Dividindo por 70 teremos uma relação simplificada de 1-1,75. Multiplicando por um coeficiente 10, a fórmula será 10-00-18. A quantidade: 400 g/planta/aplicação.
As outras 2 de nitrogênio de 40 g por aplicação, seria 90 g/planta/aplicação de uréia.

quinta-feira, 10 de setembro de 2009

Adubação Foliar - micronutrientes nas culturas de café e algodão

Cultura do Café
A adubação foliar com os nutrientes NPK e Mg não substitui a adubação de solo. Deve ser utilizada apenas para corrigir as deficiências destes nutrientes e apresentadas pelas plantas.
Então, no café, deve-se dar ênfase aos micronutrientes pois as plantas respondem muito bem às aplicações dos mesmos. O café necessita dos micronutrientes zinco, boro, cobre e manganês. A correção de zinco em solos arenosos é mais eficiente que em solos argilosos. Mas por via foliar é ótima.
O boro (B), devido a sua imobilidade, deve ser recomendado em adubação foliar. O manganês e o cobre devem, também, ser corrigidos por via foliar.
Os cafeicultores usam a prática de aplicar zinco e boro, principalmente, em várias aplicações durante o ano. Isto deve ter um cuidado muito especial pois, muitas vezes, estas aplicações são desnecessárias e causam problemas de toxidez para as plantas, causando grandes perdas na produção e, consequentemente, no lucro com a lavoura. Por isto, mais uma vez, chamo a atenção que é necessária uma análise criteriosa das plantas feita em laboratórios químicos.
Os sintomas de deficiência podem ser observados "a olho nu", visual, mas isto exige uma prática muito grande. Mas quando os sintomas chegam a ser visíveis, a produtividade já está comprometida. Neste caso, o melhor é fazer a análise química da planta, de preferência antes de iniciar o período das pulverizações.
Cuidados especiais devem ser tomados na composição das soluções:
1) o cobre (Cu) diminui a absorção de zinco (Zn) em 50%;
2) o cloreto de potássio aumenta a absorção de zinco;
3) borax e sulfato de zinco não devem ser misturados. Usar no lugar do borax, o ácido bórico;
4) o nitrogênio da uréia e o potássio têm melhor absorção quando o pH é 7,0;
5) o pH 3,0 facilita a absorção de fósforo.

Cultura do algodão

Os nutrientes devem estar à disposição no período de 35 a 110 dias após a emergência. Isto corresponde ao início da fase reprodutiva. Os nutrientes aplicados como complemento foliar são:
Nitrogênio (N) – deve ser aplicado quando houver deficiência. Usar uréia na concentração de 5 a 7%, a baixo volume. No mínimo devem ser feitas 3 aplicações durante o florescimento. Adicionar 100 a 200g/ha de molibdênio (Mo) na forma de molibdatos de amônio ou de sódio.
Potássio (K) – este nutriente é recomendado quando o solo for arenoso e apresentar baixos níveis de potássio no plantio ou quando se deseja altas produtividades em cultura irrigada. Usa-se o nitrato de potássio via foliar em 4 a 6 aplicações semanais após o florescimento. A dosagem é de 4 a 8 kg/ha por aplicação (80 a 120 dias após emergência).
Com relação ao micronutrientes, os mais exigidos pela cultura do algodão são: boro, manganês e zinco. Em menores quantidades, os micronutrientes cobre, ferro e molibdênio: Ou seja:
Manganês – 240 g/ha ;
Zinco – 400 g/ha ;
Cobre – 24 g/ha
Boro - 60 g/ha (em três aplicações ou 45-70 dias após emergência).
Molibdênio – 60 g/ha em duas aplicações (45-60 dias após emergência)

terça-feira, 8 de setembro de 2009

Calagem e Adubação do arroz irrigado no RS - Parte II

Na "Calagem e Adubação do arroz irrigado no RS - Parte I, comentamos sobre as necessidades de calcário, interpretação da análise do solo quanto a sua necessidade, quando aplicá-lo, os micronutrientes, a toxidez do ferro. Nesta Parte II, vamos abordar os nutrientes NPK, as recomendações de adubação com estes nutrientes, de acordo com os teores dos mesmos no solo, e buscando um incremento de produtividade em t/ha, ou seja, uma produção acima da média da região com cultivares que não foram adubados; de acordo com o que se espera incrementar em termos de produtividade. Busca-se incrementar o potencial dos cultivares. Os dados foram obtidos através dos pesquisadores do Instituto Riograndense do Arroz - IRGA.

O Nitrogênio (N):
O nitrogênio no solo é proveniente da decomposição e mineralização da matéria orgânica. Portanto, neste caso, a matéria orgânica avalia a disponibilidade de nitrogênio no solo. Em relação ao nitrogênio, os cultivares de arroz irrigado são divididos em três categorias:
Cultivares tradicionais: aqueles que apresentam baixa resposta à aplicação de nitrogênio;
Cultivares intermediários: apresentam resposta intermediária – variedades americanas;
Cultivares modernos: são aqueles que apresentam maior resposta ao N.
Incremento de produtividade:
As tabelas de recomendação de nutrientes (NPK) são baseadas nos “rendimentos potenciais” de cada região, e no “incremento de produtividade”. O “rendimento potencial” de uma região é a produtividade média alcançada sem adubação. Por isto, nas tabelas de recomendação, a seguir, encontramos incrementos de produtividade de 2, 3, 4 t/ha.




Quando a radiação solar é alta – no período de 15 dias antes do florescimento e 15 dias depois – há probabilidades de rendimentos elevados, e, portanto a resposta do arroz à aplicação de quantidades maiores de nitrogênio (N); isto se consegue quando o arroz é semeado dentro da época recomendada.
A uréia e o sulfato de amônio são as fontes de N mais recomendadas – amídica e amoniacal, respectivamente – pois, nestas condições de solo irrigado, as perdas de N por lixiviação e desnitrificação são menores. Os fosfatos diamônio (DAP) e monoamônio (MAP) usados pelos fabricantes nas formulações, como fontes de nitrogênio e fósforo, também são recomendáveis quando aplicados em cobertura.
Se a cultura anterior foi uma leguminosa/gramínea, a recomendação de N pode ser reduzida em 30%; ou se em lavouras anteriores houve ocorrência de bruzone, visto que o desenvolvimento desta doença é favorecido pelo excesso de N; ou houve um exagerado desenvolvimento vegetativo.
A aplicação de N deve ser parcelada; em solo seco utiliza-se 10 kg/ha de N e o restante em cobertura. Nas dosagens inferiores a 50 kg/ha a aplicação de N deve ser feita numa única vez por ocasião da diferenciação da panícula.
Na cobertura pode-se aplicar a metade no início do perfilhamento (emissão da 4ª folha) e a outra metade na diferenciação da panícula. Em cultivares de ciclo longo - maior que 135 dias – aplica-se 1/3 no perfilhamento, 1/3 no perfilhamento pleno e mais 1/3 na diferenciação da panícula.
No sistema pré-germinado, a aplicação de N na semeadura não é indicada pelas perdas de desnitrificação.Nos solos secos, aplicar N em cobertura três dias antes da irrigação. A irrigação incorpora o fertilizante e o deixa disponível por um período mais longo. A aplicação sobre a água deve ser com a lâmina não circulante.

O Fósforo:
O nutriente fósforo (P) tem um papel muito importante no crescimento da planta, e devido a sua baixa mobilidade no solo, sua grande translocação no interior da planta, sua dose deve ser aplicada totalmente no plantio. Os fosfatos naturais reativos misturados com os fosfatos solúveis em água têm mostrado eficiência agronômica em solos com teores de P maiores que 3 mg/dm³.
Para solos com teores de P Mehlich acima de 3 mg/dm³ pode-se utilizar fosfatos naturais reativos. Mas lembre-se! “O fosfato natural deve ser reativo”. Fosfatos naturais reativos são aqueles que aplicados ao solo apresentam eficiência agronômica. Como saber se um fosfato natura é reativo? Quando o fosfato natural apresentar alta solubilidade num extrator, o ácido fórmico a 2%, na relação 1:100. Relação 1:100 significa 1 g de fosfato diluído em 100 ml de ácido. No Mercado Comum Europeu, os fosfatos naturais são considerados reativos quando apresentam mais de 55% do fósforo total solúvel em ácido fórmico 2%, 1:100. Quanto maior esta percentagem mais reativo é o fosfato natural.
Os fosfatos naturais de Gafsa, Arad, apresentam alta reatividade. Infelizmente os fosfatos naturais brasileiros são de baixa reatividade; prestam-se mais para serem solubilizados por ácidos fortes – fosfórico, sulfúrico – para a produção de fosfatos solúveis em água.
Em solos que receberam fosfatos naturais, como fonte de P, deve-se adotar o método resina. Para solos com teores acima de 6,0 mg/dm³ e 20 mg/dm³ de P – respectivamente Mehlich e Resina – as probabilidades de retorno econômico são muito pequenas, pois estes valores são considerados teores críticos. Neste caso, a adubação fosfatada deve, apenas, repor os nutrientes retirados pelas culturas.


O Potássio (K):
O arroz irrigado é exigente em potássio (K), mas apresenta baixa resposta ao nutriente. Isto pode ser devido ao K contido na água de irrigação, os processos de troca no complexo coloidal do solo, a liberação de K nas frações não trocáveis, pela inundação, e a substituição do K pelo sódio (Na); o sódio é abundante em grande parte dos solos cultivados com arroz.
Aqui, a capacidade de troca de cátions, CTC a pH 7,0 foi considerada:
Tabela K
O cloreto de potássio deve ser o principal fertilizante a ser usado nestes solos cultivados com arroz.
O sulfato de potássio (50% de K20), em condições de temperatura alta pode liberar H2S que é tóxico para o arroz.






Exercício:
Um produtor mandou fazer a análise do solo, na área a ser plantada com arroz irrigado, e o resultado foi 2,8% de matéria orgânica M.O., médio teor de potássio (K), uma CTC a pH 7,0 de 5,4 cmolc/dm³, um teor de fósforo (P) de 2,01 mg/dm³ pelo método Mehlich, e 8,0 mg/dm³ de P pelo método Resina. A meta é um incremento de produtividade de 4 t/ha. O produtor utilizará cultivares modernos com alta resposta à adubação. Na safra 2008/2009 foi plantado uma leguminosa, a soja, e vem ocorrendo nas safras anteriores o aparecimento da doença bruzone. Quais as fórmulas de fertilizantes similares que podem ser aplicadas na lavoura ?
Pelas tabelas anteriores de recomendação, as necessidades de nutrientes NPK são:
Nitrogênio (N): 110 kg/ha;
Fósforo (P2O5): 60 kg/ha;
Potássio (K2O): 70 kg/ha
Aplicação de N:como foi plantada soja na safra anterior e vem ocorrendo ataque de bruzone, vamos reduzir a necessidade deste nutriente em 30%, ou seja, vai ser preciso 77 kg/ha.
O produtor irá aplicar 10 kg/ha de N, no plantio, e 0s restantes 66 kg/ha ele irá aplicar em cobertura, dividindo a dose em 2 aplicações: 33 kg/ha no perfilhamento, e os restantes 33 kg/ha na diferenciação da panícula.
Então no plantio, será aplicado 10 kg de N, 60 kg de P2O5 e 70 kg de K2O. Temos uma relação entre os nutrientes de 10-60-70. Vamos simplificar esta relação dividindo todos pelo menor número; neste caso, 10. Obtemos uma relação simplificada 1-6-7. Para achar as fórmulas similares, basta multiplicar esta relação por coeficientes (2,3,4,...8).
Por exemplo, multiplicando por 3 a relação simplificada, teremos uma fórmula 03-18-21. Qual a quantidade em kg/ha desta fórmula para fornecer os nutrientes que o arroz precisa? É só "dividir a necessidade de qualquer nutriente – por exemplo, 10 – pelo teor respectivo do nutriente na fórmula, e multiplicar por 100". É o caso de (10/3) x 100 = 333 kg/ha. Ou (70/21) x 100 = 333 kg/ha. No quadro abaixo são apresentadas outras fórmulas similares, seguindo este raciocínio.





Estas fórmulas encontradas baseiam-se nos dados hipotéticos apresentados como espelho dos teores de nutrientes encontrados no solo, e que serviram para a execução do exercício. Na prática, é só identificar os teores de nutrientes de uma análise do solo, estabelecer as recomendações de nutrientes, elaborar a relação simplificada, e chegar às formulas de fertilizantes similares.

Convém alertar, entretanto, que os “incrementos de produtividade” dependem da utilização de sementes certificadas, o bom manejo do solo, controle de pragas e doenças, e outras práticas, são essenciais para um incremento da produção. Esquecer isto e só pensar em adubar, não resolve nada. As recomendações de adubação são uma média da resposta do arroz irrigado à adubação e ao incremento de produtividade. As dosagens devem ser ajustadas à capacidade de resposta dos cultivares a este incremento. Nada adianta utilizar altas recomendações de nutrientes visando um máximo de incremento na produção, e utilizar cultivares de arroz tradicionais, de baixa resposta.

sábado, 5 de setembro de 2009

Os Índices de Produtividade

Em 1980, com base no Censo Agropecuário de 1975, o governo fixou os índices de produtividade: estes determinavam que a “terra tem que produzir alimentos”. Passados quase 20 anos, o governo quer atualizar os índices: serão fixados com base nos dados apresentados pela Produção Agrícola Municipal (PAM) elaborada pelo IBGE, por microrregião geográfica, a partir da média de produtividade entre o período de 1996-2007: cultura por cultura; região por região. Os índices de produtividade entrarão em vigor em 2010. Eles são estabelecidos por Lei e é uma obrigação do governo: assegurar que as terras agricultáveis sejam usadas; produzam alimentos para toda população; não sejam usadas para reforma agrária. As terras improdutivas serão usadas para reforma agrária disse o Sr. Cassel, Ministro do Desenvolvimento Agrário. Mas o que é no seu entender terras improdutivas que possam ser trabalhadas para a reforma agrária? Se são improdutivas... O melhor seria chamar de propriedades improdutivas, que não produzem o suficiente por área. Segundo o próprio Ministro, a maior parte das áreas permanecerão nos novos índices de produtividade ou acima deles, porque os proprietários também evoluíram tecnicamente, e aumentaram a produtividade da suas lavouras. Senão, vejamos:

O Ministro Cassel cita que no município de Sorriso – MT, o índice de produtividade da soja passará de 1.200 para 2.400 kg/ha; entretanto o rendimento médio na safra 2006/2007 foi de 3.062 kg/ha. No RS, em Bento Gonçalves, o índice da uva aumentará de 12.000 para 13.303 kg/ha; o rendimento na safra 2006/2007 foi de 15.000 kg/ha.
Portanto, pelo que se vê, os que produzem dentro da média não têm com o que se preocupar. Como o INCRA faz sua vistoria voltada para um ano pra trás, em 2011 este trabalho estará sendo executado com base nos índices alcançados pelos produtores em 2010. Fatores como disponibilidade de crédito, custos elevados dos insumos, baixos preços pagos ao produtor não são levados em conta. É claro que, a princípio, os índices atualizados estarão abaixo das médias obtidas atualmente; mas permaneceria na terra aquele que a explorasse de maneira racional, com adoção de tecnologia moderna para obtenção de altas produtividades; os que assim não o fizessem seriam eliminados naturalmente do processo de exploração econômica da terra.



quinta-feira, 3 de setembro de 2009

Adubação Foliar - micronutrientes nas culturas da soja e milho

Cultura da soja
De todos os micronutrientes necessários ao desenvolvimento da soja, o molibdênio (Mo) e o cobalto (Co) são os mais importantes. Eles exercem um papel fundamental na fixação do nitrogênio (N) do ar pelas bactérias do gênero Rhysobium que necessitam de ambos nutrientes. Os solos brasileiros, em geral, são pobres em molibdênio e cobalto. 0s solos dos cerrados são os mais pobres. Já os solos do Rio Grande do Sul e Paraná apresentam teores maiores de cobalto (Co) e menores de molibdênio (Mo). Daí a utilização de maiores concentrações de molibdênio. A soja responde muito bem às aplicações de molibdênio com altas produtividades. Em solos com pH abaixo de 5,5 e a soja apresentando sintomas de deficiência na fase incial de desenvolvimento, pelo amarelecimento das folhas, ocasionada pela baixa eficiência das bactérias Rhysobium na fixação do nitrogênio do ar, é resolvido com aplicações de molibdênio. A utilização em excesso de cobalto provoca um amarelecimento das folhas da soja na fase inicial de desenvolvimento. O excesso de cobalto inibe a ação do ferro (Fe).
A pesquisa, através da Embrapa, recomenda a utilização destes micronutrientes, seja no tratamento de sementes ou via foliar.
O tratamento de sementes é feito com 12 a 25 g/ha de Mo e 1 a 5 g/ha de Co. Uma aplicação média de cobalto de até 3 g/ha, é uma dose segura para evitar a fitotoxidez para a soja. Quando o molibdênio é aplicado nas sementes, ele deve preceder a inoculação das mesmas. Na aplicação foliar, utiliza-se 30 g/ha de Mo, 20-35 dias após a emergência. Uma aplicação é ótimo, se bem que os dois tratamentos (sementes e foliar) sejam importantes. Em solos arenosos deve-se usar a dose mais elevada. No caso da soja destinar-se à produção de sementes é recomendável fazer mais uma aplicação na época de enchimento dos grãos, pois estaremos garantindo teores maiores de molibdênio na semente, o que garantirá uma melhor fixação de nitrogênio do ar na próxima germinação das mesmas. Os teores de molibdênio devem ser maiores que 2 mg/kg de semente, já que de 1 a 2 mg/kg é considerado baixo. Como fonte de molibdênio solúvel em água pode-se utilizar o molibdato de amônio (54% de Mo) e o molibdato de sódio (39% de Mo). Os produtos devem ser quelatizados, pois garantem a maior estabilidade, compatibilidade com defensivos e melhor aproveitamento pelas bactérias Rhysobium e, consequentemente, pela planta.
ATENÇÃO: como o molibdênio não pode ser quelatizado isoladamente, o melhor é fazê-lo com o cobalto.
Atentar para o fato de que algumas matérias-primas de molibdênio e cobalto não podem ser utilizadas quanto a sua compatibilidade com o Rhysobium. Ler os rótulos e bulas dos produtos.
Onde existe integração lavoura-pecuária deve-se cuidar o teor de molibdênio nas pastagens. Com a elevação do pH do solo quando se faz a calagem, o Mo tem a sua disponibilidade aumentada podendo afetar o metabolismo do cobre (Cu) em ruminantes. Quando o teor de Mo nas partes aéreas das plantas atingir 5 mg/ha, deve-se suspender a sua adição ao solo.
Como no Brasil os solos são ácidos, a calagem torna-se necessária. A elevação do pH do solo torna o manganês (Mn) menos disponível para as plantas, ocorrendo os sintomas de deficiência traduzida pelo amarelecimento da planta. O manganês é responsável pelo aumento da produtividade, melhor germinação, pelos teores de proteína e óleo. Para corrigir a deficiência de manganês utiliza-se aplicações foliares de 500 g de Mn no início do florescimento. Isto soluciona o problema. Poderão ser necessárias até duas aplicações. Por sua vez, o manganês pode ser quelatizado. Entretanto, o quelato deve estar especificado no rótulo. Na complementação foliar, as doses recomendadas são de 150g/ha de quelatizado na forma de nitrato ou cloreto de manganês; 250 g/ha Mg-EDTA à base de sulfato.
Outro micronutriente, o boro (B) é aplicado via foliar na flor da soja. Isto melhora a fecundação prevenindo o abortamento de flores e vagens. Este abortamento ocasiona uma redução drástica da produtividade e a prevenção com boro evitará este sério problema. O produto deve ser aplicado antes da florada. O nutriente cálcio ajuda na função do boro. Podem ser aplicados até 500 g de boro.
Quanto aos micronutrientes cobre (Cu), ferro (Fe) e zinco (Zn) devem ser aplicados até o florescimento da plantas. O zinco emprega-se de 50 a 150 g/ha. Quanto ao cobre, a dosagem é de 50 a 100 g/ha.
Os adubos foliares que contêm Mn na sua composição, quando em misturas com herbicidas, provocam uma reação química no tanque de pulverização formando precipitados que causam entupimentos dos filtros e dos bicos dos pulverizadores. Há um prejuízo na operacionalidade das pulverizações. Consulte o seu técnico – existem no mercado produtos que foram testados e que melhoram a incompatibilidade.

A adubação foliar não é somente para a cultura da soja. O crescimento da área cultivada com algodão nos cerrados, o aumento do uso de zinco na cultura do milho, o aumento do número de pulverizações fitossanitárias na laranja e o uso de fertilizantes minerais têm contribuído para o aumento do consumo de fertilizantes foliares.

Cultura do milho
O manganês (Mn) é aplicado quelatizado e na forma de sais. Deve ser aplicado quando a planta de milho apresentar 6 folhas. Em híbridos de milho que são suscetíveis à deficiência de Mn, deve-se fazer duas aplicações.
O cobre (Cu) é empregado na dose de 400g/ha divididos em três (3) aplicações:
200g/ha no estágio de 4-5 folhas;
100g/ha no estágio de 7 folhas;
100 g/ha no estágio de 8 folhas.
Quanto ao zinco (Zn) usam-se doses de 100 a 400g/ha quelatizado e na forma de sais que são aplicados junto com inseticida para a lagarta do cartucho (entre a 4ª e 5ª folha).

terça-feira, 1 de setembro de 2009

Calagem e Adubação do arroz irrigado no RS - Parte I

No Rio grande do Sul, a área plantada com arroz é ao redor de um milhão de hectares e uma produtividade média de 7.500 kg/ha. O município maior produtor é Santa Vitória do Palmar - no Sul do Estado - com mais de 56 mil hectares e uma produtividade média de 7 mil quilos; segue Arroio Grande com 40 mil hectares e 6.700 kg/ha; Viamão com mais de 23 mil e produtividade de 6.040 kg/ha. Nesta Parte I vamos abordar sobre a calagem, necessidade de enxofre, micronutrientes e toxidez por ferro.
Solos submersos favorecem a disponibilidade de nutrientes; tantos os contidos no solo como os provenientes de adubos, isto é, fósforo (P), cálcio (Ca) e potássio (K). A eliminação da acidez para um pH próximo de 6,0-6,5 e a eliminação do Al³ trocável, são outros fatores da inundação de terras onde é cultivado o arroz irrigado. Apesar disto, os solos do Rio Grande do Sul são de fertilidade natural baixa o que requer a aplicação de fertilizantes para maior rendimento das lavouras de arroz.
A análise do solo é imprescindível para o êxito do empreendimento. Entretanto, muitas vezes, estas amostras não condizem com a realidade da situação da área; são tiradas de qualquer jeito e não são representativas. Por este motivo os resultados são errôneos, e, logicamente, as recomendações de adubação também o são.

A Calagem:
Em solos submersos, se verifica o efeito da “autocalagem”.
A autocalagem apresenta uma série de benefícios:a) eliminação do alumínio (Al) tóxico;
b) eliminação da toxidez de manganês (Mn);
b) aumento da disponibilidade de P e outros nutrientes;
c) aumento da atividade dos microorganismos.
Mas como o arroz irrigado é semeado em solo seco, e somente inundado 30 dias após a emergência das plantas, recomenda-se o uso do calcário segundo o índice SMP – pH 5,5. No sistema de cultivos com sementes pré-germinadas ou de transplantio de mudas, dispensa-se a aplicação de calcário; a inundação já deixa o solo corrigido e as plantas encontram melhores condições para o seu crescimento. A calagem é importante quando o solo apresentar deficiências de cálcio (Ca) e magnésio (Mg). O calcário dolomítico – que contém cálcio e magnésio – é o mais apropriado para atender estas deficiências. Quando solo apresentar teores de Ca de 2,5 cmolc/dm³, e magnésio de 0,5 cmolc/dm³, é recomendada a aplicação de 1 t/ha de calcário dolomítico.
A calagem, propriamente dita, apresenta benefícios também:a) promove o desenvolvimento do arroz no período entre a semeadura e a inundação;
b) fornece Ca e Mg;
c) promove parcial solubilização do ferro (Fe) cujos efeitos tóxicos começam a aparecer com a utilização das variedades modernas;
d) benefício para as outras culturas em rotação.
O calcário deve ser aplicado na camada de 0-20 cm, três meses antes do plantio.

O Enxofre (S):
Em solos pobres de matéria orgânica, de argila, de teores de S na análise do solo indicando menos que 10 mg/dm³, devem-se utilizar fertilizantes que contém enxofre (sulfato de amônio), aplicando-se até um máximo de 20 kg/ha.

Os Micronutrientes:Nos solos do RS, a resposta ao micronutrientes é muito baixa. Quando a deficiência for constatada devem-se fazer aplicações por via foliar.


A toxidez por ferro (Fe)
Em solos alagados acontece a redução do Fe³ para o Fe² promovendo a toxidez de ferro, pelo aumento da quantidade do nutriente na solução do solo. Há um acúmulo de Fe nas raízes (toxidez indireta), e, pela absorção concentra-se nas folhas (toxidez direta). Isto resulta na inibição e translocação dos nutrientes provocando um sintoma – o alaranjamento. Para reparar este problema devemos utilizar cultivares de arroz tolerantes à toxidez pelo ferro: IRGA 424, IRGA 425, são tolerantes; IRGA 414, resistente. A calagem prévia, para atingir pH 6,0, é outra forma de diminuir o problema.
A antecipação da aplicação de N – uma semana antes da diferenciação da panícula – contribui, também, para reduzir os efeitos da toxidez por ferro.
A utilização da irrigação intermitente pode, também, evitar o acúmulo de ferro.
Na próxima publicação "Calagem e Adubação do arroz irrigado no RS - Parte II", vamos comentar sobre adubação: os três macronutrientes primários - NPK - tabelas de recomendação e um exercício para por em prática os conhecimentos.

segunda-feira, 31 de agosto de 2009

Queda no Consumo de Fertilizantes - Menor Produtividade das Lavouras

Segundo informações da ANDA – Associação Nacional para Difusão do Adubo – a entrega de fertilizantes ao consumidor, no período de janeiro a junho de 2009 caiu em 26,5%; são quase 8,5 milhões de toneladas contra as 11,5 milhões entregues no mesmo período em 2008. A produção nacional de fertilizantes também caiu em 1 milhão de toneladas, enquanto as importações, para uso em fertilizantes, tiveram uma queda mais drástica: cerca de 5,3 milhões de toneladas, ou seja, 61,1% em relação a 2008.
A preocupação é que no mesmo período, nestas três áreas (entrega, produção e importação) os sinais eram de crescimento nos anos de 2005 a 2008; contrariada pela queda em 2009. Aliás, esta queda já começou em setembro do ano passado.
Mas o que podemos esperar do 2° semestre? Até o ano passado o maior volume de fertilizantes entregue aos produtores era no 2° semestre; alcançando mais de 100% em relação ao 1° semestre. Se continuar este quadro, estimamos que o 2° semestre não será igual aos anteriores. E a sobra de tudo isto? Claro, um reflexo na produtividade das lavouras. A não reposição de níveis ideais de nutrientes contribui para um processo paulatino de empobrecimento do solo que se transmite à produtividade das lavouras. Podemos esperar para a safra 2009/2010 uma queda maior de produção das lavouras; considerando a mesma área de plantio da última safra. Na safra 2008/2009, isto já vai começar a ser sentido.
O produtor vem trocando mais produção agrícola para comprar uma tonelada de adubo. Há um aumento no preço dos insumos e uma queda ou manutenção nos preços de venda dos produtos agrícolas. E a medida adotada pelo agricultor é reduzir o consumo de fertilizantes a fim de diminuir os custos da lavoura. Entretanto, é uma faca de dois gumes; minimiza os custos, mas a rentabilidade cai.

quinta-feira, 27 de agosto de 2009

Interpretação de Análise do Solo - Cálculos de S, CTCs, m% e V%.

Na interpretação de uma análise de solo é importante conhecermos os valores S da soma de bases, as capacidades de troca de cátions efetiva e a pH 7,0, a percentagem de saturação por alumínio (m%) e a percentagem de saturação por bases (V%). Para determinação da calagem, em vários Estados brasileiros, se utiliza o valor V% que diferencia os solos férteis dos solos de baixa fertilidade. Baseado num resultado hipotético de uma análise de solo, vamos calcular estes valores tão importantes para o técnico na recomendação da calagem e dos fertilizantes, visando uma maior produtividade das culturas.
Uma análise do solo aponta os seguintes teores de nutrientes no solo.


1) Cálculo da soma de bases (S)

Aqui temos um problema. No cálculo da soma de bases (S) das CTC efetiva e a pH 7,0, dos valores (m%) e (V%) os cátions deve estar expressos, todos eles, em cmolc/dm³ ou mmolc/dm³. No resultado da análise acima, o K está expresso em mg/dm³. Então, é preciso transformar estes mg/dm³ K em cmolc/dm³ de K.
25 mg/dm³ K = 0,025 g/dm³ K  (atualização em 07/07/2014)
cmolc = peso atômico (em g) /valência/100
O peso atômico do K = 39 e sua valência é igual a 1
1 cmolc/dm³ K = 39g/1/100 = 0,39 g K
Como 1cmolc/dm³ K corresponde 0,39 g K
............X...................corresponderá 0,025 g K
X = 0,025 x 1 / 0,39 = 0,06 cmolc/dm³ K
Portanto 25 mg/dm³ K = 0,06 cmolc/dm³ K
Agora podemos calcular a soma de bases pois todos os nutrientes estão expressos na mesma unidade.
S = Ca²+Mg²+K¹ = 05+0,1+0,06 = S=0,66 cmolc/dm³

2 - Cálculo da CTC efetiva do solo (t)
Empregaremos a fórmula t = S + Al³
t = 0,66 + 1,7 = 2,36
t = 2,36 cmolc/dm³

3 - Cálculo da percentagem de saturação por Al da CTC efetiva (m%)m % = (100 x Al) / t = (100 x 1,7) / 2,36 = 72
m % = 72%
Neste solo, a percentagem de saturação por Al da CTC efetiva é de 72%.

4 - Cálculo da percentagem de saturação por bases da CTC efetiva
100 – m = 100 – 72 = 28
A percentagem de saturação por bases da CTC efetiva é de 28 %.

5 - Cálculo da CTC a pH 7,0 (T)T = S + (H + Al) = 0,66 + 5,4 = 6,04
T = 6,04 cmolc/dm³

6 - Cálculo da percentagem de saturação por bases (V%) da CTC a pH 7,0
V% = (100 x S) / T = (100 x 0,66) / 6,04 = 10,9%.
V = 10,9%.

7 - Cálculo da percentagem de saturação por ácidos da CTC pH 7,0
100 – V = 100 – 10,9 = 89,1%
O solo, conforme os dados da análise, é um solo com baixo teor de bases trocáveis que ocupam quase 28% da CTC efetiva e 10,9% da CTC a pH 7,0. O valor da CTC efetiva é baixíssimo. O solo apresenta baixa capacidade de reter cátions. A argila deste solo é uma argila de baixa reatividade. Por outro lado, 72% dos pontos de troca estão ocupados pelo Al em relação a CTC efetiva. Isto oferece grandes limitações ao desenvolvimento das culturas. A calagem e aplicações de fertilizantes devem ser importantes recomendações para este solo, visando aumentar a produtividade da lavoura.

terça-feira, 25 de agosto de 2009

Adubação Foliar - Parte II

Na Parte I abordamos sobre a importância da adubação foliar na correção de deficiências, os tipos de adubação via folha e a lei do mínimo. Continuaremos, nesta parte II, a tecer comentários sobre a importância desta prática que vem crescendo ano a ano o interesse dos produtores pela adoção da mesma.

Leia a parte 1 desse artigo em:
Adubação foliar - Parte 1

Na adubação foliar, dois mecanismos se processam:
1) penetração do nutriente através da cutícula para o interior da folha. Isto se faz de maneira rápida. É a “fase passiva”.
2) o nutriente penetra no interior da célula. É um processo demorado. É a “fase ativa”.
A menor quantidade de ceras presentes na cutícula favorece a absorção dos nutrientes. As cutículas devem estar bem hidratadas. Substâncias lipoidais penetram mais facilmente nas folhas mais velhas. A absorção de nutrientes é mais intensa nas folhas novas do que nas folhas adultas e velhas.
Em relação aos nutrientes, a mobilidade dos mesmos é um dos fatores que influi na absorção de nutrientes:
Íons móveis; sódio (Na), nitrogênio (N), fósforo (P), potássio (K), enxofre (S), cloro (Cl).
Íons parcialmente móveis: os micronutrientes - zinco (Zn), cobre (Cu), ferro (Fe), molibdênio (Mo) e manganês (Mn).
Íons imóveis: cálcio (Ca) e magnésio (Mg).

Vantagens x benefícios da adubação foliar
1) dosagem precisa
– traz importantes benefícios como: menor custo na aplicação; não há desperdício de nutrientes; a aplicação é homogênea; melhor aproveitamento dos nutrientes;
2) maior uniformidade na aplicação – a lavoura apresenta-se mais homogênea; o ponto de maturação torna-se igual; e maior produtividade são os benefícios desta vantagem;
3) redução na mão-de-obra – importantes benefícios como a diminuição de custos; aplicação simultânea com herbicidas fungicidas e inseticidas.

No emprego dos fertilizantes foliares deve-se levar em consideração uma série de cuidados quanto às condições de aplicação:
Os fertilizantes foliares devem ser aplicados:
1) em dias frescos e nublados;
2) de manhã cedo e no final da tarde;
3) quando as plantas estiverem túrgidas. Quando há boa disponibilidade de água no solo, a planta mantém as células túrgidas favorecendo a penetração dos nutrientes via foliar;
4) depois da irrigação.
Os fertilizantes foliares não devem ser aplicados:
1) em dias claros e quentes;
2) nas horas mais quentes do dia;
3) quando as plantas estão murchas;
4) antes da irrigação.
O uso de agentes molhantes ou adesivos melhoram a cobertura das pulverizações sobre a superfície das folhas.
Os surfactantes são substâncias que adicionadas às soluções, suspensões ou emulsões, diminuem as tensões interfaciais e funcionam como estabilizadores das mesmas. São usados em pequenas quantidades (0,1 a 2 %). Entre eles encontramos:
Espalhantes – diminuem o ângulo de contato da água com a superfície das folhas.
Molhantes – promovem um contato maior da solução com a superfície das folhas. É o caso do uso de sabões, detergentes, lecitina de soja.
Adesivos – têm as propriedades dos molhantes mas de maneira mais acentuada. Eles formam um película protetora impedindo que a solução escorra.
Humectantes – dificultam a evaporação da água.
Dispersantes – são usados como estabilizadores de suspensões sólidas em água. É o caso da lecitina de soja.
Emulsionantes – também são estabilizadores de emulsões de óleo e água.

Efeito do pH
O pH do solo além de influir na absorção de nutrientes pode agir na disponibilidade dos mesmos. O fósforo é absorvido pela planta em pH ácido como H2PO4-, enquanto os íons HPO4-² e PO4-³ em pH alcalino.

Fontes de nutrientes
Ácidos – ácido fosfórico e ácido bórico.
Hidróxidos – hidróxido de cálcio.
Quelatos – quelatos de ferro (Fe-EDTA).
Óxidos – óxido de zinco e óxido manganoso (MnO).
Nos solos com alto teor de manganês, o ferro encontra-se em baixa disponibilidade. Fazer pulverizações com zinco.
Em citros as deficiências de zinco são corrigidas com aplicações de compostos de zinco.
No café, em solos argilosos, as deficiências de zinco são corrigidas com sulfato de zinco.
A adubação foliar é uma forma mais eficiente de corrigir deficiências de ferro (Fe) em solos alcalinos.


INCOMPATIBILIDADE
Chama-se incompatibilidade de fertilizantes a utilização de dois ou mais materiais que produzam uma deterioração de suas propriedades físicas e/ou químicas, diminuindo a eficiência dos mesmos.

quinta-feira, 20 de agosto de 2009

Análise de Solos - Os Conceitos de S, CTCs, m%, V%

A análise do solo é o instrumento que o técnico utiliza para recomendar as necessidades de calagem e fertilizantes, melhorando as condições de fertilidade de um solo, para que as plantas encontrem os nutrientes que elas precisam para responder com altas produtividades. É importante o conhecimento dos conceitos abaixo para que tenhamos uma noção mais ampla das condições e manejo da fertilidade do solo. Vamos comentar a importância de cada um, as fórmulas utilizadas para cálculos da soma de bases, CTCs, percentagem de saturação por Al³, percentagem de saturação por bases (V%) e outros.
1 - Soma de bases trocáveis (S) ou (SB)

Aqui se calcula a soma dos cátions Ca² + Mg² + K + Na. Os cátions estão na forma trocável no complexo de troca do solo. Através do valor da soma de bases podemos calcular a CTC efetiva, a CTC a pH 7,0, a saturação por bases (V%).
S = Ca²+Mg²+K+Na.
O valor da soma de bases é expresso em cmoc/dm³ ou mmolc/dm³. Convém lembrar que todos os cátions devem estar expressos em cmoc ou mmolc . Se a análise do solo apresentar os cátions com unidades diferentes, eles devem ser transformados para as unidades que expressam a soma de bases. Além disto, cmoc/dm³ x 10 = mmolc/dm³. Da mesma forma, mmolc/dm³ dividido por 10 = cmoc/dm³.
"A soma de bases (S) dá uma indicação do número de cargas negativas que estão ocupados por bases nos colóides do solo".

2 - Capacidade de Toca de Cátions - CTC efetiva (t)
Esta nos diz a capacidade efetiva de um solo em reter cátions próximos do seu pH natural.
t = S + Al³
Os valores são expressos em cmoc/dm³ ou mmolc/dm³.

3 - Capacidade de Troca de Cátions - CTC a pH 7,0
É a quantidade de cátions adsorvida a pH 7,0 ou, em outras palavras, a CTC potencial do solo. Seria o valor a ser atingido se a calagem elevasse o pH a 7,0. "O máximo de cargas negativas que seriam liberadas a pH 7,0 para serem ocupadas por cátions".
A CTC a pH 7,0 (T) diferencia-se da CTC efetiva a pH natural (t), pois ela inclui o H. O íon H encontra-se em ligação covalente, muito forte, com os óxidos de ferro e alumínio, e o oxigênio (O) dos radicais orgânicos.
T = S + (H + Al³)
Se desejamos liberar cargas negativas que estão ocupadas pelo H na CTC a pH 7,0 devemos elevar o pH do solo acima de 5,5. Nesta faixa não existe mais o Al³ trocável. Em certas culturas, quando se aplicam doses elevadas de calcário ele irá neutralizar parte destes íons H ou acidez não trocável.

4 - Percentagem de saturação por Alumínio (m%)
Expressa quanto por cento da CTC efetiva está ocupada pela acidez trocável ou Al trocável.
"Seria a percentagem de cargas negativas do solo que está ocupada pelo Al³ trocável, próximo ao pH natural do solo. Ela expressa a toxidez do alumínio".
Quanto mais ácido for o solo, maior o teor de alumínio trocável, maior a percentagem de saturação por Al, menores os teores de Ca, Mg, K e, consequentemente, menor a soma de bases trocáveis.
m (%) = (100 x Al³) / t = (100 x Al³) / Ca²+Mg²+K¹+Na¹+Al³
Em solos arenosos, com alta saturação por Al³, a produção de massa verde de soja reduz consideravelmente a partir de 12% no valor m%. A soja é sensível à saturação por alumínio. Doses de calcário devem ser recomendadas para elevar a saturação por bases (V%) em 60%.
Em solos argilosos, a situação não é tão ruim. Aqui o fator limitante na produção de massa verde da soja foi a partir do valor m% de 31%. Em solos argilosos a saturação por bases (V%) deve ser elevada para 50%.
No sistema de plantio direto, deve-se considerar V = 60%.
Neste experimento, a relação Al/Ca teve comportamento drástico na produção de massa verde da soja em solos arenosos onde o valor da relação ficou em torno de 0,2. Nos solos argilosos a relação Al/Ca foi de 0,5.
Quando a saturação por Ca for inferior a 4 ou 5 vezes o alumínio, a produção de massa verde da soja cai drasticamente em solos arenosos. Já em solos argilosos, com a saturação de Ca duas vezes mais que a saturação por alumínio, ou seja uma relação Al/Ca igual a 0,5 o comportamento é menos drástico.
O efeito tóxico do Al é maior no solo arenoso do que no solo argiloso.
Quando se adiciona calcário na dosagem recomendada aumenta-se os teores de Ca e Mg e vai reduzindo os teores de Al³ (acidez trocável), até que no pH 5,6 o Al³ , praticamente, deixa de existir . Com isto o valor da percentagem de saturação por Al (m%) fica zerado. E, por consequência, a percentagem de saturação por bases da CTC efetiva deve ser 100%. Neste patamar a acidez trocável deixa de existir.
Diminuindo-se de 100 o valor encontrado em m%, teremos a percentagem de saturação por bases da CTC efetiva.

5 - Percentagem de saturação por bases (V%)
Este valor expressa quanto por cento dos pontos de troca de cátions no solo estão ocupados por bases. Ou seja, “quanto por cento das cargas negativas a pH 7,0 estão ocupadas por bases como Ca, Mg, Na e K em comparação com aquelas ocupados por Al e H; o valor V% serve para diferenciar solos pobres (V<50>50)”.
Vários Estados brasileiros utilizam o V% para recomendar a quantidade de calcário a ser aplicada ao solo, pelo método de elevação de bases.

V% = (100 x S) / T = [100 x (Ca+Mg+K+Na)] / (Ca+Mg+K+Na+H+Al)
Diminuindo-se de 100 o valor V encontramos a percentagem de saturação por ácidos da CTC a pH 7,0.