Mostrando postagens com marcador nitrogênio. Mostrar todas as postagens
Mostrando postagens com marcador nitrogênio. Mostrar todas as postagens

terça-feira, 11 de maio de 2010

As Reações dos Fertilizantes Nitrogenados e o Solo

A principal ideia quando se aplicam fertilizantes é que eles vão adicionar nutrientes ao solo e que este, através das raízes, proverá a planta dos nutrientes necessários ao seu desenvolvimento vegetativo e à produção de grãos. Entretanto, quando aplicamos fertilizantes, inúmeras reações ocorrem entre os seus compostos e o solo. No caso dos fertilizantes nitrogenados, as reações mais importantes serão descritas a seguir:

quinta-feira, 6 de maio de 2010

As Formas de Absorção de Nitrogênio pelas Plantas

As plantas usam duas formas de absorção de nitrogênio (N): o "nítrico - NO3-" e o "amoniacal - NH4+". A preferência é pela forma nítrica.
As vantagens e desvantagens de ambas formas são as seguintes:

terça-feira, 20 de abril de 2010

As Funções do Nitrogênio para as Plantas

O nitrogênio (N) é o nutriente responsável para o crescimento das plantas, para a produção de novas células e tecidos. O nitrogênio promove a formação de clorofila, que é um pigmento verde encontrado nas folhas e que captura a energia do sol. A clorofila combina CO2 + H2O formando açúcares, que a planta necessita para o seu crescimento e produção de grãos e frutos. A clorofila é composta de carbono (C), hidrogênio (H), oxigênio (O), nitrogênio (N) e magnésio (Mg); destes, somente o nitrogênio e o magnésio são oriundos do solo. As plantas deficientes em N apresentam as folhas com uma coloração verde-pálida ou amarelada devida à falta de clorofila.

terça-feira, 27 de outubro de 2009

Adubação dos Citros nos Estados de Sergipe e Bahia

Os citros, no Brasil, são encontrados do Norte e Nordeste, ao Sudeste e Sul. Pelas características do solos brasileiro serem pobres em nutrientes e ácidos, a produtividade das laranjas ainda é muito baixa. Os citros desenvolvem-se melhor em solos com pH entre 6,0 e 6,5 e uma saturação por bases (V%) de 60 a 65. Por isto, esta cultura merece uma atenção melhor do produtor, com adoção de práticas modernas, visando o aumento da produtividade. Já publicamos, anteriormente, uma matéria sobre a calagem em citros mostrando os benefícios desta prática. Resta agora a adubação: e os Estados de Sergipe e Bahia serão o alvo desta matéria.

Adubação:
Para a recomendação de adubação é necessário que o citricultor tenha em mãos a análise do solo das áreas dos pomares. A análise do solo serve para conhecer o nível de fertilidade de um solo, e assim recomendar corretamente os fertilizantes. Quanto maior o número de amostras simples (subamostras) maior é a possibilidade de se ter uma amostra representativa. As plantas absorvem os nutrientes durante todo o ano, principalmente na época de floração e formação de novos ramos e folhas.Quando se aumenta a aplicação de potássio (K), utilizando o cloreto de potássio, aumenta-se a concentração de K disponível no solo.

ESTADO DE SERGIPE:

Pomar em formação:
Como aporte de fósforo (P2O5) usa-se 500 g/cova de superfosfato triplo, no plantio. Como fonte de matéria orgânica, usa-se o esterco de bovino ou torta de mamona ou esterco de galinha poedeira. O volume de esterco de bovino não deve ultrapassar 30% do volume da cova; a torta de mamona e o esterco de galinha não deve ultrapassar 10%. Quando se usa uma fonte orgânica deve-se esperar 30 dias para o plantio da muda, pois a mineralização da matéria orgânica libera calor. Em relação ao N recomendado pode-se substituir 1/3 da dose por produtos orgânicos, no plantio: 5 a 10 kg de esterco curtido, ou 3 a 5 kg de esterco de aves, ou 1 a 2 kg de torta de mamona por cova. O nitrogênio é o nutriente mais exigido pela planta cítrica durante a fase vegetativa. Na tabela abaixo sobre a recomedação de nutrientes aplicando matérias-primas, em vermelho está expressa a quantidade de supersimples, uréia e cloteto de potássio; logo abaixo, em preto, estão expressas as quantidades de nutrientes em N, P2O5 e K2O recomendadas, e baseadas na interpretação de P e K no solo. Em lugar do supersimples pode-se usar supertriplo corrigindo a quantidade a aplicar. A vantagem do supersimples é ele possuir enxofre (S) na sua composição.

Na tabela a seguir temos exemplos de como usar as fórmulas prontas de fertilizantes: basta saber em que faixas estão o P e o K no solo. Sabendo isto, usa-se a dose recomendada de P2O5 e K2O para tal faixa de interpretação e mais o N; tudo conforme a idade da planta. Obtém-se as necessidades de nutrientes, as relações simplificadas que multiplicadas por números (coeficientes) vão nos dar as fórmulas similares; e a partir destas as quantidades a aplicar.

Pomar em produção:
O nitrogênio deve ser aplicado com base na recomendação feita através de uma análise foliar; o fósforo (P2O5) e o potássio (K2O) com base no resultado da análise do solo. A quantidade de nitrogênio e de potássio deve ser fracionada em duas aplicações: no início e no final do período chuvoso; o fósforo deve ser aplicado numa única vez, no início das chuvas. Já nos pomares em formação ou em produção, pode-se usar 5 a 20 t/ha de esterco de curral, ou a 1 a 5 t/ha de torta de mamona. Os nutrientes devem ser aplicados em faixas, ao lado ou ao redor da planta. A faixa inicia 20 cm do tronco até 1,80 m do mesmo.O plantio de leguminosas entre as linhas pode ser uma opção como fornecimento de nitrogênio. O enxofre pode ser aplicado na adubação foliar – menos de 2 g/kg, usando sulfato de amônio (12% S) ou superfosfato simples (24% S). Quando o teor de magnésio, no solo, é menor que 1 cmolc/dm³, e na folha menor que 3 g/kg deve-se usar calcário dolomítico ou aplicação foliar de sulfato de magnésio de 4 g/L.
Micronutrientes:

ESTADO DA BAHIA:

Adubação de plantio:
É feita no sulco ou na cova usando-se calcário e superfosfato simples. Deficiência de boro (B) no solo - menor que 0,2 mg/dm³ - usar 1 g/m de B
Deficiência de zinco (Zn) no solo - menor que 1,2 mg/dm³ - usar 2 g/m de sulfato de zinco que pode ser aplicado junto com o supersimples.

Adubação de formação:
Inicia-se após o pegamento da muda até a idade de cinco anos. As quantidades de fertilizantes variam conforme o resultado da análise do solo e idade da planta. Pode se usar fertilizantes simples, misturas de grânulos, misturas granuladas. A uréia não deve ser aplicada em solo úmido e se seguido por mais de três dias de estiagem, pois há volatilização da amônia e perdas de N. Evitar a incorporação dos fertilizantes, por gradagem, pois danifica as raízes, cortando-as.
Adubação de produção
Começa a partir do sexto ano. Os fertilizantes são parcelados em quantidades e épocas de aplicação. Na Bahia, esta prática vai de março a agosto ou durante todo o ano se houver irrigação. Os fertilizantes devem ser colocados ao alcance das raízes para que haja um melhor aproveitamento dos nutrientes pelas mesmas. Nos citros, as adubações orgânicas e verde são recomendáveis. Os adubos orgânicos são capazes de fornecer N para as plantas. Os orgânicos nas quantidades abaixo fornecem, cada um, 10 kg de N:
2.000 kg de esterco de curral
500 kg de esterco de aves
200 kg de torta de mamona
Micronutrientes:
Nos pomares de produção os micronutrientes zinco (Zn), boro (B) e manganês (Mn) podem ser aplicados no solo ou via foliar: o boro, de preferência, por via solo; o zinco e o manganês, via foliar; utiliza-se a uréia e o cloreto de potássio como coadjuvantes nas aplicações foliares, pois melhoram a absorção dos micronutrientes. A melhor época para aplicá-los, via foliar, é durante o processo vegetativo da planta: em 3 a 4 aplicações parceladas. Na fase de produção, a primeira ocorre nos meses de janeiro e fevereiro. Quando a deficiência de boro for intensa aplicar 2 kg/ha de B em duas aplicações anuais.
Doses de micronutrientes por 100 litros de água
Zn – 300 g – sulfato de zinco
Mn – 300 g – sulfato de manganês
Cu - 250 g – hidróxido de cobre
B - 50 g – ácido bórico; ou 100 g borax
Mo - 30 g – molibdato de sódio

terça-feira, 20 de outubro de 2009

Calagem e Adubação do Milho no RS e SC

A área plantada com milho no RS é de 1,28 milhão de hectares com uma produção de 5,1 milhões de toneladas alcançando uma produtividade média de 3.984 kg/ha. A FARSUL calcula que serão plantados na safra 2009/2010, 800 mil hectares; uma redução de 35%.
O baixo preço da saca de milho e a alta dos insumos estão desencorajando os produtores. Com isto, o milho vai ceder área para a soja que ganhará 500.000 para seu incremento. Há esperanças que a situação melhore nos próximos meses. O milho é uma cultura muito importante para o Estado: alimentação humana, e de animais (suinocultura e aves).

Calagem:
Os solos do Rio Grande do Sul são ácidos e para um bom desenvolvimento das plantas, que se traduza em aumento de rendimentos, é necessária a prática da calagem.
Leia mais sobre a determinação da calagem nos solos do RS.(clique aqui)

Adubação do Milho:

Nitrogênio (N):
No milho, o nitrogênio é recomendado em função do teor de matéria orgânica e da cultura antecedente.
Utiliza-se 15 kg/ha de N para cada expectativa de produção de 1.000 kg/ha. Se a cultura antecedente foi uma consorciação ou pousio utiliza-se a média de N recomendada para leguminosas e gramíneas, dentro de cada faixa de teor de matéria orgânica, e expectativa de produção.
As expectativas de rendimentos de 4, 6, 8 t/ha vão depender: do clima; disponibilidade de chuvas; semeadura em época ideal; alta densidade de plantas; irrigação; variedades de alto potencial de produção; correção da fertilidade do solo com todos os nutrientes aportados. Todas estas qualidades concorrem para uma expectativa de produção de mais de 8 t/ha.
Leia mais sobre inoculação de sementes de milho

Sistema convencional:
Recomenda-se de 10 a 30 kg/ha de N na semeadura, de acordo com a expectativa de rendimento; e o restante, em cobertura, quando as plantas apresentarem de 4 a 8 folhas; ou 40 a 60 cm de altura. Se o período for de chuvas e a dose de N for elevada, pode-se dividir a adubação de cobertura em duas partes com intervalo de 15 a 30 dias entre cada uma.

Sistema Plantio Direto (SPD):
Recomenda-se aplicar 20 a 30 kg/ha de N na semeadura quando for em resíduos de gramíneas, e 10 a 15 kg/ha de N quando o cultivo for em resíduos de leguminosas. Antecipando-se a adubação de cobertura com N para quando a planta possuir 4-6 folhas, consegue-se bons resultados. Quanto às fontes nitrogenadas, tanto o sulfato de amÔnio como a uréia proporcionaram rendimentos iguais, em aplicações superficiais. A escolha de uma ou outra fonte vai depender do custo da unidade de N de cada uma; a uréia tem 42-45% de N, e o sulfato de amônio 20% de N.

Fósforo (P) e Potássio (K)
No RS+SC, as recomendações de adubação em fósforo e potássio são estabeleciads para dois cultivos sucessivos: milho depois trigo; trigo depois soja; soja depois trigo. No caso do milho, as recomendações são estabelecidas para expectativas de produção de 4, 6 e 8 t/ha. A partir de 4 t/ha, acrescenta-se 15 kg/ha de P2O5 e 10 kg/ha de K2O para cada 1.000 kg de expectativa de rendimento. Elaboramos, abaixo, uma tabela onde o milho é plantado no 1° cultivo e novamente em sucessão, no 2° cultivo.


Na tabela abaixo, temos dois cultivos sucessivos: milho, no 1° cultivo; e trigo no 2° cultivo. Há, ainda, as necessidades de N, P2O5 e K2O em kg/ha e as fórmulas similares que podem ser utilizadas; elas fornecem as mesmas quantidades de nutrientes, apenas variando na quantidade de aplicação. A expectativa de produção de milho é de 6 t/ha, e a do trigo de 2 t/ha.


Após dois anos, uma nova análise de solo deve ser feita para verificar as condições de fertilidade do solo. É muito importante!.

Leia mais sobre "como calcular fórmulas similares"

quinta-feira, 15 de outubro de 2009

Adubação e Calagem da Soja no RS

Calagem:
A recomendação de calagem, no sistema convencional baseia-se no índice SMP; no sistema de plantio direto a recomendação é determinada pela análise dos critérios principais: pH em água e V%; não havendo concordância entre os dois critérios, analisa-se a porcentagem de saturação por Al (m%), e o teor de fósforo no solo. Leia mais sobre isto

Adubação da Soja:

Nitrogênio:
Devido ao processo de fixação biológica do N do ar pelas bactérias do gênero Risobium, não é recomendada a aplicação de fertilizantes nitrogenados na cultura da soja.

Fósforo e Potássio:
As recomendações para fósforo (P) e potássio (K) são determinadas pela Comissão de Química e Fertilidade do Solo – RS/SC. Os assistentes técnicos das lavouras, os escritórios de extensão rural, etc, devem estar cientes das tabelas elaboradas por esta Comissão, para as diversas culturas, e assim recomendar as necessidades de adubação. A Comissão elabora tabelas visando dois cultivos em sucessão, e preconiza a prática de ser feita nova análise do solo após dois anos.
Vamos mostrar abaixo as recomendações para duas culturas em sucessão: no primeiro cultivo a soja, e no segundo cultivo, o trigo; conforme o teor de matéria orgânica e a interpretação de P e K no solo.


No trigo, a recomendação de nitrogênio (N) no plantio é de acordo com o teor de matéria orgânica; as quantidades levam em conta se a cultura antecedente foi uma leguminosa ou uma gramínea.
Convém chamar a atenção que as recomendações da Comissão para o trigo, a soja, são para uma expectativa de produção de 2.000 kg/ha.

Nosso objetivo aqui é mostrar que com as recomendações de nutrientes podemos chegar a diversas fórmulas que são similares, variando apenas a quantidade em kg/ha. Vamos supor cinco áreas de terra em que será feito um planejamento: plantio de soja no primeiro cultivo e trigo no segundo cultivo. Os dados de matéria orgânica e interpretação de P e K são hipotéticos.
Para a soja adotamos uma expectativa de produção média de 3.000 kg/ha. Para cada 1.000 kg/ha de expectativa de produção de soja, deve-se adicionar à recomendação a quantia de 15 kg/ha de P2O5 e 25 kg/ha de K2O, como fizemos no exercício. Na postagem já publicada "Encontrando fórmulas similares de adubo" mostramos como chegar às mesmas: leia aqui sobre este assunto



Como a cultura antecedente foi uma leguminosa (soja no primeiro cultivo) as doses de N, variam de 60 a 20 kg/ha conforme o teor de matéria orgãnica no solo. Mas quanto ao nitrogênio aplicado por ocasião do plantio do trigo, adotamos a dosagem de 20 kg/ha - pode-se usar de 15 a 20 kg/ha - e o restante deverá ser aplicado em cobertura.

Enxofre:
A soja responde à aplicação de enxofre (S). Em solos que apresentam teores de S inferiores a 10 mg/dm³ devem receber 20 kg/ha de S.

Micronutrientes:
A aplicação de molibdênio (Mo) deve ser feita em solos com pH em água menor que 5,5 , e quando a soja apresenta, no desenvolvimento inicial, uma coloração amarelecida generalizada das folhas; isto acontece porque o processo de fixação biológica ainda não está completamente eficiente. Uma maneira para evitar esta deficiência é, antes do plantio, misturar 12 a 25 g/ha de molibdênio com as sementes; ou quando a deficiência aparece na lavoura, aplica-se 25 a 50 g/ha de Mo, via foliar. Utilizam-se os molibdatos solúveis em água: molibdato de amônio que contém 54% de Mo; ou molibdato de sódio que possui 39% de Mo. A mistura de molibdato com as sementes deve ser feita antes da inoculação das mesmas. As aplicações foliares devem ocorrer 30 a 45 dias após a emergência.
Outros micronutrientes devem ser aplicados somente quando a análise do solo constatar deficiências de um ou mais elementos.
Entretanto, cuidados devem ser tomados quanto aos micronutrientes molibdênio e cobalto (Co): nas áreas que existe integração lavoura-pecuária, o teor de Mo nas pastagens deve ser avaliado constantemente. Sabe-se que a calagem eleva o pH, e isto aumenta a disponibilidade de Mo; por sua vez, o Mo pode afetar o metabolismo do cobre (Cu) em ruminantes. A aplicação de Mo no solo deve ser suspensa quando o teor do micronutriente, na parte aérea das plantas, atingir 5 mg/kg de Mo.
Quanto ao cobalto (Co), as quantidades a serem aplicadas não devem ultrapassar 3 g/ha de Co, para evitar a fitotoxidez para a soja.

terça-feira, 13 de outubro de 2009

A Qualidade dos Inoculantes

A produtividade da soja aumentou muito nos últimos anos graças à recomposição da fertilidade do solo; à utilização de fertilizantes compostos e micronutrientes; ao aparecimento de variedades mais produtivas; ao uso de fungicidas e inseticidas; isto se traduz em maior aporte de nitrogênio. Daí a necessidade da indústria de buscar inoculantes com maior concentração de bactérias.
As bactérias do gênero Rhysobium têm a propriedade de fixar o nitrogênio do ar (N2) em amoníaco e assim ser aproveitado pelas plantas das famílias das leguminosas: as plantas, por sua vez, o transformam em proteínas; e proteína é nitrogênio; os grãos de soja possuem mais de 40% de proteína. Este processo simbiótico se chama " Fixação Biológica do Nitrogênio (FBN)".
A simbiose, entre a planta e as bactérias, promove a formação de nódulos nas raízes das leguminosas, como é o caso da soja. As leguminosas fornecem hidratos de carbono para os microorganismos; estes fornecem o nitrogênio necessário para a formação de proteínas.
Este processo, fornecendo nitrogênio para as plantas, dispensa o uso total ou parcial de fertilizantes nitrogenados, e diminuindo os custos de produção da lavoura. Por outro lado, o aporte de nitrogênio faz com que as plantas aumentem a sua produção: porque a soja responde muito bem em produtividade ao aporte de nitrogênio.
Mas para se conseguir estes resultados são necessárias técnicas de inoculação, que devem ser aplicadas para se obter a máxima eficiência dos inoculantes:

  1. alta concentração de bactérias sobre as sementes - hoje a tecnologia industrial permite obter mais de 10 bilhões de bactérias por mL de inoculante;


  2. usar estirpes com alta capacidade de fixar biologicamente mais nitrogênio do ar e incorporar ao solo - graças à seleção de estirpes, consegue-se produzir inoculantes com alto grau de eficiência das bactérias;


  3. manter sobrevivente o maior número de bactérias que vão promover maior quantidade de nódulos nas raízes - o uso de protetores bacterianos têm garantido alta sobrevivência das bactérias sobre as sementes, protegendo-as de condições desfavoráveis; graças a estes protetores já é possível inocular as sementes vários dias antes do plantio. Além disto: uma maior aderência das bactérias nas sementes; maior umectação das células bacterianas; maior nutrição com fontes energéticas e minerais que alongam a vida das bactérias.

Hoje a qualidade dos inoculantes no Brasil é muito boa: no início da década de 80 foi elaborada a primeira legislação: a concentração mínima era de 100 milhões de bactérias por gramo, no momento da produção, e 10 milhões no fim do prazo de validade. Na década de 90, uma nova legislação exigia a esterilização da turfa, e elevando a concentração mínima para um bilhão de bactérias por gramo. Por outro lado, a pesquisa nacional busca estirpes de risóbio cada vez mais eficientes.
A ANPII (Associação Nacional de Produtores e Importadores de Inoculantes) quer no próximo ano, um processo de certificação de inoculantes produzidos pelas empresas. Dentro de dois a três anos, todo o inoculante comercializado terá um selo de qualidade que garantirá que o agricultor está usando, em sua lavoura, um produto de grande qualidade.

terça-feira, 6 de outubro de 2009

Adubação da Cultura do Milho

O milho responde muito bem à correção da acidez e à aplicação de nutrientes através dos fertilizantes. A medida que aumenta a produção, as exigências de N e K são maiores; depois o Ca, Mg e P. É muito importante que o produtor de milho atente para o fato de aplicar no solo as técnicas modernas a fim de obter altas produções em suas lavouras que compensem os gastos com os insumos aplicados, mão de obra, investimentos, e principalmente a remuneração do seu trabalho. Hoje não se pode pensar mais em aventurar na lavoura: temos sementes de alta capacidade de produção desde que os produtores utilizem e apliquem as técnicas modernas, orientados por agrônomos e técnicos.
Nitrogênio (N):
É o nutriente mais absorvido pela planta de milho. Sua deficiência limita a produtividade. Entretanto, o N está sujeito a uma série de perdas: volatilização, desnitrificação, lixiviação. A sua eficiência na utilização pelas plantas é de 60%, motivada por estas perdas.
O nitrogênio (N), como o fósforo (P), é mais exigido na fase de desenvolvimento e no período de formação da espiga; a menor absorção se verifica no período compreendido entre a emissão do pendão e o início da formação da espiga. O importante são os solos apresentarem alto teor de matéria orgânica. Solos com baixos teores de matéria orgânica apresentam baixas produções ou torna-se oneroso a compensação com maiores quantidades de adubos nitrogenados. A mineralização da matéria orgânica, a reciclagem de resíduos de culturas e a aplicação de fertilizantes nitrogenados minerais ou orgânicos são as fontes de fornecimento de N para o milho. Podemos reduzir as aplicações de N se contarmos com bons teores de matéria orgânica no solo: para isto devemos dar ênfase à rotação de culturas; a integração lavoura-pecuária; a cobertura verde, etc. O plantio do milho sobre a palhada, de culturas anteriores, contribui para economia na aplicação de nitrogenados.
Para se determinar a quantidade de N recomendada para o milho deve-se levar em consideração o teor de matéria orgânica do solo, e a expectativa de produtividade.





O produtor deve planejar a sua lavoura: o essencial do negócio é a rentabilidade; deve-se levar em conta: os riscos; a ocorrência de geadas; a utilização de híbridos de alto potencial produtivo; a fertilidade do solo nas camadas de 0-20 e 20-40. Isto tudo satisfeito e havendo condições favoráveis, pode o produtor pensar em doses de N superiores a 150 kg/ha.
Para evitar a lixiviação, recomenda-se parcelar as doses de N nas seguintes condições:
1) solos arenosos – baixa matéria orgânica, baixa fertilidade, mal drenados:
até 30 kg/ha de N no plantio, e cobertura no estádio de duas a quatro folhas (V2-V4)
2) solos com menores perdas de N:
antecipar até 45 kg/ha de N; adubação de base na semeadura, e adubação de cobertura no estádio (V2-V4).
O milho, por remover grandes quantidades de N, precisa de adubação de cobertura com nitrogenados. E o milho responde à aplicação de nitrogenados com altas produções. A adubação nitrogenada antecipada deve ser feita no mesmo dia da semeadura para evitar perdas por lixiviação. A adubação em cobertura deve ser realizada até o estágio de 4 folhas, pois é nesta fase que se define o potencial produtivo do milho. Para a produção de cada 1.000 kg de grãos são exportados 16 kg/ha de N.
A adubação em cobertura do milho sequeiro deve ser feita com 40 a 80 kg/ha. Nas culturas irrigadas, devido às condições favoráveis para altas produtividades, deve-se aplicar de 100 a 150 kg/ha.

Fósforo:
O fósforo (P) é limitante à produção em solos da Região dos Cerrados. As exigências de P são menores que as de N e K. Mas sabe-se que do P aplicado ao solo, a planta aproveita de 15 a 25% devido à fixação do P no solo.

Potássio (K):
O potássio, após o N, é o segundo nutriente mais absorvido pelas plantas. Como nos demais Estados da Região Central, o teor deste nutriente, no solo, é pequeno: insuficiente para suprir as quantidades exigidas pelas culturas em sucessão. O milho também responde muito bem à aplicação de potássio (K). Aplica-se de 120 a 150 kg/ha de K2O. Em solos arenosos, a aplicação de doses superiores a 80 kg/ha de K2O, recomenda-se parcelar: metade da dose no plantio, e a outra metade junto com a adubação de cobertura nitrogenada. O potássio (K) é importante no período de 30 a 40 dias de desenvolvimento quando se verifica a máxima absorção; daí a necessidade de K como arranque neste período.



Enxofre (S):
Os solos do MS e dos Cerrados são deficientes em enxofre (S). A diminuição dos teores de matéria orgânica; o uso contínuo de fertilizantes cujas matéria primas apresentam pouco ou nenhum S; as quantidades extraídas pelas culturas contribuem para esta deficiência do nutriente no solo. Para se verificar a necessidade de enxofre é preciso fazer a análise do solo nas camadas de 0-20 e 20-40 porque este nutriente é muito móvel no solo e se acumula nas camadas mais profundas
A manutenção é feita com 5 kg de S para cada 1.000 kg de grãos de milho como expectativa de produção.
Micronutrientes:
No Brasil, o zinco (Zn) é o mais limitante à produção: principalmente na Região Central, em vegetação de cerrado. No caso de correção de deficiências, utiliza-se, via foliar, 400 l/ha de solução a 0,5% de sulfato de zinco neutralizada, com 0,25% de cal extinta.
As aplicações de calagens de maneira superficial (0-10 cm) ou rasa têm proporcionado problemas de deficiências de manganês (Mn).

Fonte: Embrapa. Fundação MS

terça-feira, 29 de setembro de 2009

Adubação da Soja

A área plantada com soja no Brasil atinge 21,7 milhões de hectares. A produção nacional é da ordem de 57,1 milhões de toneladas.


A produtividade média está em 2.629 kg/ha ou 43,8 sacas/ha.
A soja responde muito bem à calagem e à adubação do solo. Como os solos do Brasil são deficientes em fósforo, há necessidade de repor este nutriente e outros que se fazem necessários. Para isto, uma boa amostra de solo, representativa da área, é questão fundamental para a recomendação da calagem e dos fertilizantes. O produtor não deve se descuidar desta prática pois ela é essencial, aliada a outras práticas culturais de acordo com a técnica, ao bom desenvolvimento da planta que irá se traduzir em ganhos de produitividade, compensando os gastos dispendidos na lavoura. Vamos abordar os macronutrientes primários NPK+S. Sobre os micronutrientes, já comentamos em publicações anteriores neste blog.

Nitrogênio (N):
O nitrogênio é o nutriente mais requerido pela soja. Para produzir 1.000 kg de grãos ela precisa de 83 kg de N. A principal fonte de N é a fixação biológica através das bactéria do gênero Rhisobium. Além da inoculação das sementes com as bactérias, é necessária a aplicação de 2-3 g/ha de cobalto (Co) e 12-30 g/ha de molibdênio (Mo). Estes micronutrientes são indispensáveis no processo de fixação biológica do N. A aplicação pode ser realizada via semente ou via foliar.

Fósforo (P):
É o nutriente importante na produtividade. Como os solos brasileiros são deficientes em fósforo, sua deficiência se manifesta no baixo porte da planta, na altura de inserção das primeiras vagens e na colheita.
Nos cerrados, a correção de fósforo deve ser feita quando vai se usar a área por um período de cinco anos com outras culturas como: milho, trigo, feijão. Ela pode ser feita de duas maneiras: a correção em uma única vez; e a correção gradual no plantio junto com a manutenção.



A adubação de manutenção é recomendada quando os níveis de P mg/dm³ estão em níveis médio ou bom.
Produção de 3.000 kg/ha – 60 kg/ha de P2O5
Produção de 4.000 kg/ha – 80 kg/ha de P2O5

Potássio (K):
Os solos dos cerrados se caracterizam por baixa CTC e baixo potássio. A soja responde à adubação com potássio. Na literatura há indicações que para cada 1 kg de K2O aplicado, a soja produz 8 kg de grãos a mais do que num solo sem adubação. A suficiência de K é de 30 mg/dm³ para solos arenosos e de 50 mg/dm³ para solos argilosos.
Solos com mais de 20% de argila – adubação corretiva total de potássio
Solos com menos de 20% de argila – não se deve fazer corretiva total de K devido às perdas por lixiviação.Para uma produção de 3.000/ha de grãos, aplicar 60 kg/ha de K2O. Nos solos com menos de 20% de argila deve-se preferir correção gradual de K à lanço ou parcelada. O parcelamento deve ser feito 50% da dose no sulco de plantio, e os restantes 50% em cobertura, 30 dias após a emergência.

Acima de 50 mg/dm³ usar adubação de manutenção (M) usando 20 kg de K2O para cada 1.000 kg de grãos a ser produzida

Atingido este nível deve-se fazer a adubação de manutenção (M) usando 20 kg de K2O para cada 1.000 kg de grãos a ser produzida.

Enxofre (S):
Os solos do MS e dos Cerrados são deficientes em enxofre (S). A diminuição dos teores de matéria orgânica; o uso contínuo de fertilizantes cujas matéria primas apresentam pouco ou nenhum S; as quantidades extraídas pelas culturas contribuem para esta deficiência do nutriente no solo. Para se verificar a necessidade de enxofre é preciso fazer a análise do solo nas camadas de 0-20 e 20-40 porque este nutriente é muito móvel no solo e se acumula nas camadas mais profundas A manutenção (M) é feita com 10 kg de S por uma produção esperada de 1.000 kg de grãos de soja.
Com base nas tabelas acima, podemos fazer as recomendações das quantidades de nutrientes a serem aplicados no solo através da utilização de fertilizantes químicos. Podemos usar várias fórmulas, que chamamos similares, que guardam uma relação constante entre seus nutrientes, e de acordo com as quantidades aplicadas estaremos colocando, no solo, a quantia correta dos nutrientes recomendados.


O importante é achar a relação em que estão os nutrientes; esta relação deve ser a mesma, ou com pouquíssimas diferenças, que encontramos na fórmula sugerida. E multiplicando esta relação por coeficientes (10, 15, 20, 18...etc), vamos obtendo as diversas fórmulas similares. Para saber a quantidade basta dividir o teor do nutriente recomendado pelo seu respectivo número na fórmula, e multiplicar por 100. Por exemplo: teor recomendado de potássio: 60 kg/ha de K2O ; valor do K na fórmula 00-20-15 é 15% de K2O. Logo: 60/15 x 100 = 400 kg/ha da fórmula 00-20-15. No quadro abaixo, podemos ver duas situações: diferentes teor de argila; diferentes interpretações de P e K no solo. As necessidades de P2O5 e K2O em kg/ha estão numa relação que multiplicada por coeficientes vão nos dar várias fórmulas que podem ser utilizadas (fórmulas similares), diferenciando-se, apenas, da quantidade a ser aplicada. Para outras interpretações de P e K, é somente adotar o mesmo raciocínio.
Fonte: Embrapa, Fundação MS

terça-feira, 15 de setembro de 2009

Adubação do Café

Notícias dão conta que os cafeicultores dos cerrado mineiro diminuíram em 30% a adubação tendo em vista o aumento dos fertilizantes. O produtor que em 2007 pagava de 900 a 1.000,00 por tonelada de adubo, em 2008 teve que desembolsar de 1.500 a 1.600,00 para adquirir a mesma tonelada. Para 2009 a projeção de redução de safra gira entorno de 30%. E isto vai influir nos anos subseqüentes. Na adubação de um hectare de café, o produtor gasta 1,8 t de adubo. Segundo Pierre Vilela, da FAEMG, em 2005, o produtor para comprar uma tonelada de adubo precisava de 2,7 sacas de café. Em 2007, 3 sacas e em 2008, 4,2 sacas.
É claro que a planta adubada corretamente, com as necessidades de nutrientes por ela exigidas, responde com altas produtividades. Por outro lado, altas produtividades exportam mais nutrientes. Então, esta diminuição de 30% no emprego de fertilizantes refletir-se-á na safra e, conseqüentemente, nas safras seguintes chegando a um empobrecimento do solo se outras medidas não forem tomadas. Outros cafeicultores estão reduzindo os custos com fertilizantes usando a palha do café. Esta palha é rica em nitrogênio (N) e potássio (K). Obtém-se cerca de 8% de palha vinda da produção de café. A economia com fertilizantes químicos chega a 10%. Mas sempre é necessária uma análise do solo para aplicar a quantidade correta.
Na adubação do cafezal, o fósforo (P) é o principal nutriente, indispensável durante todo o ciclo da planta. Entretanto, este nutriente, nos solos ácidos sofre com a fixação e se liga ao ferro e alumínio formando compostos insolúveis não aproveitados pelas plantas. Daí a necessidade da calagem para liberar este fósforo tornando-o disponível para a planta. O baixo teor de matéria orgânica contribui, também, porque em condições normais a mineralização da matéria orgânica é importante para liberar fósforo disponível para a planta. Como o fósforo é importante na formação do sistema radicular, dizem que é importante aplicar o fósforo via radicular. Entretanto, como fonte de fósforo, não se usa em sua totalidade o superfosfato simples porque ele contém, além deste nutriente, mais o enxofre. Mas para não onerar os custos, os cafeicultores preferem usar uma fonte alternativa de enxofre (S). O sulfato de amônio é outra fonte de enxofre. Mas este fertilizante acidifica o solo. Os cafezais, na sua maior parte, estão situados em solos ácidos. Além da acidez são carentes em cálcio (Ca) e magnésio (Mg). O uso em grandes quantidades de sulfato de amônio contribui para acidificar mais estes solos. É preciso um equilíbrio. O desequilíbrio pode influir na eficiência dos fertilizantes e diminui consideravelmente a produtividade do cafezal.
No sul de Minas, no período de outubro a março é que a planta aproveita melhor os nutrientes quando a adubação é feita de 3 a 4 vezes. Os adubos nitrogenados que apresentam as maiores perdas por lixiviação devem ser aplicados em intervalos de 40-60 dias. Quanto ao potássio (K), duas aplicações são suficientes. Em solos arenosos, o potássio deve ser parcelado com o nitrogênio. O fósforo pode ser aplicado em uma única vez, como no caso da fosfatagem.

Adubação do PlantioDeve ser feita conforme o resultado da análise do solo. Por exemplo:
Para uma recomendação de 40 g/cova de fósforo e 20 g/cova de potássio temos uma relação 00-40-20. Dividindo-se a relação por 20 teremos uma relação simplificada 0-2-1. Multiplicando por 10, a fórmula encontrada é 00-20-10. A quantidade é encontrada dividindo-se a recomendação de fósforo (40 g) pelo teor do nutriente na fórmula (20) e multiplicando por 100. Chega-se a uma dose de 200 g/cova desta formulação. Adiciona-se até 1 g/cova de boro (B) e até 2 g/cova de zinco.
Conforme o teor de matéria orgânica no solo, aplica-se esterco de curral em L/cova.
Matéria orgânica <> 20 g/kg – 2 L/cova.

PegamentoProcede-se a adubação de cobertura utilizando-se 4 g/planta de N (10 g de uréia) de 2 a 3 aplicações, no período chuvoso. Isto é importante, pois a aplicação em períodos secos, com estiagem, provoca perdas de nitrogênio para o ar. Ou utilizar sulfato de amônio pois as perdas de N são bem menores, mas há o perigo de acidificar o solo pelas reposições continuadas. O adubo é aplicado ao redor da planta a uma distância de 10 cm do caule.

Primeiro ano após o plantioAplicar 6 g/planta de N (15 g de uréia) e mais 4 g/planta de K (7 g de cloreto de potássio por 2 ou 3 vezes, no período chuvoso. Em vez de utilizar os fertilizantes simples (uréia, cloreto de potássio), pode-se utilizar os fertilizantes em misturas. Neste caso, seria utilizada a fórmula 15-00-10 na base de 40 g/planta por aplicação.

Segundo ano e sucessivos
Aplica-se o dobro da recomendação para o primeiro ano. Neste caso, 80 g/planta da fórmula 15-00-10 por aplicação.

Terceiro ano e sucessivos
Seria a adubação de produção. Aqui, mais uma vez, chamo a atenção dos cafeicultores para realizarem a análise do solo e a análise de planta (foliar). A medida que se busca maiores produções de sacas/ha, a necessidade e a reposição de nutrientes aumenta. Existem tabelas de recomendação para os Estados produtores de café. Vamos supor que para uma produção de 50-60 sacas de café por hectare, as necessidades de nutrientes para um solo cuja análise foliar e do solo apresentaram os seguintes resultados:
N nas folhas – 27 g/kg
P – 8 mg/dm³
K – 0,17 cmolc/dm³. Em mmolc/dm³ seria 1,7
A recomendação técnica foi de 160 g/planta de N, 70 g/planta de P2O5 e 140 g/planta de K2O. Temos uma relação 160-70-140. Dividindo ela pelo menor número (70) teremos uma relação simplificada: 2,28-1-2. Multiplicando pelo coeficiente 8 chegamos a uma fórmula 18-8-16. Dividindo a recomendação, por exemplo, N (160) pelo N da fórmula (18) e multiplicando por 100, a dose será de 900 g/planta.
No caso de aplicar fertilizantes simples, as quantidade a serem usadas para os 160 N-70 P2O5-140 K2O seriam: 350 g de uréia, 150 g superfosfato triplo e 230 g de cloreto de potássio.
A adubação nitrogenada deve ser parcelada em 4 vezes e a com potássio em 2 vezes. Entretanto pode-se usar uma fórmula que contenha os dois nutrientes: NK. Ou seja, as necessidades são 160 N e 140 K2O.
Nitrogênio (N): 160 em 4 aplicações – 40 g/planta/aplicação
Potássio (K): 140 em duas aplicações – 70 g/planta/aplicação
Por aplicação temos: 40 N + 70 K2O. Dividindo por 70 teremos uma relação simplificada de 1-1,75. Multiplicando por um coeficiente 10, a fórmula será 10-00-18. A quantidade: 400 g/planta/aplicação.
As outras 2 de nitrogênio de 40 g por aplicação, seria 90 g/planta/aplicação de uréia.

terça-feira, 8 de setembro de 2009

Calagem e Adubação do arroz irrigado no RS - Parte II

Na "Calagem e Adubação do arroz irrigado no RS - Parte I, comentamos sobre as necessidades de calcário, interpretação da análise do solo quanto a sua necessidade, quando aplicá-lo, os micronutrientes, a toxidez do ferro. Nesta Parte II, vamos abordar os nutrientes NPK, as recomendações de adubação com estes nutrientes, de acordo com os teores dos mesmos no solo, e buscando um incremento de produtividade em t/ha, ou seja, uma produção acima da média da região com cultivares que não foram adubados; de acordo com o que se espera incrementar em termos de produtividade. Busca-se incrementar o potencial dos cultivares. Os dados foram obtidos através dos pesquisadores do Instituto Riograndense do Arroz - IRGA.

O Nitrogênio (N):
O nitrogênio no solo é proveniente da decomposição e mineralização da matéria orgânica. Portanto, neste caso, a matéria orgânica avalia a disponibilidade de nitrogênio no solo. Em relação ao nitrogênio, os cultivares de arroz irrigado são divididos em três categorias:
Cultivares tradicionais: aqueles que apresentam baixa resposta à aplicação de nitrogênio;
Cultivares intermediários: apresentam resposta intermediária – variedades americanas;
Cultivares modernos: são aqueles que apresentam maior resposta ao N.
Incremento de produtividade:
As tabelas de recomendação de nutrientes (NPK) são baseadas nos “rendimentos potenciais” de cada região, e no “incremento de produtividade”. O “rendimento potencial” de uma região é a produtividade média alcançada sem adubação. Por isto, nas tabelas de recomendação, a seguir, encontramos incrementos de produtividade de 2, 3, 4 t/ha.




Quando a radiação solar é alta – no período de 15 dias antes do florescimento e 15 dias depois – há probabilidades de rendimentos elevados, e, portanto a resposta do arroz à aplicação de quantidades maiores de nitrogênio (N); isto se consegue quando o arroz é semeado dentro da época recomendada.
A uréia e o sulfato de amônio são as fontes de N mais recomendadas – amídica e amoniacal, respectivamente – pois, nestas condições de solo irrigado, as perdas de N por lixiviação e desnitrificação são menores. Os fosfatos diamônio (DAP) e monoamônio (MAP) usados pelos fabricantes nas formulações, como fontes de nitrogênio e fósforo, também são recomendáveis quando aplicados em cobertura.
Se a cultura anterior foi uma leguminosa/gramínea, a recomendação de N pode ser reduzida em 30%; ou se em lavouras anteriores houve ocorrência de bruzone, visto que o desenvolvimento desta doença é favorecido pelo excesso de N; ou houve um exagerado desenvolvimento vegetativo.
A aplicação de N deve ser parcelada; em solo seco utiliza-se 10 kg/ha de N e o restante em cobertura. Nas dosagens inferiores a 50 kg/ha a aplicação de N deve ser feita numa única vez por ocasião da diferenciação da panícula.
Na cobertura pode-se aplicar a metade no início do perfilhamento (emissão da 4ª folha) e a outra metade na diferenciação da panícula. Em cultivares de ciclo longo - maior que 135 dias – aplica-se 1/3 no perfilhamento, 1/3 no perfilhamento pleno e mais 1/3 na diferenciação da panícula.
No sistema pré-germinado, a aplicação de N na semeadura não é indicada pelas perdas de desnitrificação.Nos solos secos, aplicar N em cobertura três dias antes da irrigação. A irrigação incorpora o fertilizante e o deixa disponível por um período mais longo. A aplicação sobre a água deve ser com a lâmina não circulante.

O Fósforo:
O nutriente fósforo (P) tem um papel muito importante no crescimento da planta, e devido a sua baixa mobilidade no solo, sua grande translocação no interior da planta, sua dose deve ser aplicada totalmente no plantio. Os fosfatos naturais reativos misturados com os fosfatos solúveis em água têm mostrado eficiência agronômica em solos com teores de P maiores que 3 mg/dm³.
Para solos com teores de P Mehlich acima de 3 mg/dm³ pode-se utilizar fosfatos naturais reativos. Mas lembre-se! “O fosfato natural deve ser reativo”. Fosfatos naturais reativos são aqueles que aplicados ao solo apresentam eficiência agronômica. Como saber se um fosfato natura é reativo? Quando o fosfato natural apresentar alta solubilidade num extrator, o ácido fórmico a 2%, na relação 1:100. Relação 1:100 significa 1 g de fosfato diluído em 100 ml de ácido. No Mercado Comum Europeu, os fosfatos naturais são considerados reativos quando apresentam mais de 55% do fósforo total solúvel em ácido fórmico 2%, 1:100. Quanto maior esta percentagem mais reativo é o fosfato natural.
Os fosfatos naturais de Gafsa, Arad, apresentam alta reatividade. Infelizmente os fosfatos naturais brasileiros são de baixa reatividade; prestam-se mais para serem solubilizados por ácidos fortes – fosfórico, sulfúrico – para a produção de fosfatos solúveis em água.
Em solos que receberam fosfatos naturais, como fonte de P, deve-se adotar o método resina. Para solos com teores acima de 6,0 mg/dm³ e 20 mg/dm³ de P – respectivamente Mehlich e Resina – as probabilidades de retorno econômico são muito pequenas, pois estes valores são considerados teores críticos. Neste caso, a adubação fosfatada deve, apenas, repor os nutrientes retirados pelas culturas.


O Potássio (K):
O arroz irrigado é exigente em potássio (K), mas apresenta baixa resposta ao nutriente. Isto pode ser devido ao K contido na água de irrigação, os processos de troca no complexo coloidal do solo, a liberação de K nas frações não trocáveis, pela inundação, e a substituição do K pelo sódio (Na); o sódio é abundante em grande parte dos solos cultivados com arroz.
Aqui, a capacidade de troca de cátions, CTC a pH 7,0 foi considerada:
Tabela K
O cloreto de potássio deve ser o principal fertilizante a ser usado nestes solos cultivados com arroz.
O sulfato de potássio (50% de K20), em condições de temperatura alta pode liberar H2S que é tóxico para o arroz.






Exercício:
Um produtor mandou fazer a análise do solo, na área a ser plantada com arroz irrigado, e o resultado foi 2,8% de matéria orgânica M.O., médio teor de potássio (K), uma CTC a pH 7,0 de 5,4 cmolc/dm³, um teor de fósforo (P) de 2,01 mg/dm³ pelo método Mehlich, e 8,0 mg/dm³ de P pelo método Resina. A meta é um incremento de produtividade de 4 t/ha. O produtor utilizará cultivares modernos com alta resposta à adubação. Na safra 2008/2009 foi plantado uma leguminosa, a soja, e vem ocorrendo nas safras anteriores o aparecimento da doença bruzone. Quais as fórmulas de fertilizantes similares que podem ser aplicadas na lavoura ?
Pelas tabelas anteriores de recomendação, as necessidades de nutrientes NPK são:
Nitrogênio (N): 110 kg/ha;
Fósforo (P2O5): 60 kg/ha;
Potássio (K2O): 70 kg/ha
Aplicação de N:como foi plantada soja na safra anterior e vem ocorrendo ataque de bruzone, vamos reduzir a necessidade deste nutriente em 30%, ou seja, vai ser preciso 77 kg/ha.
O produtor irá aplicar 10 kg/ha de N, no plantio, e 0s restantes 66 kg/ha ele irá aplicar em cobertura, dividindo a dose em 2 aplicações: 33 kg/ha no perfilhamento, e os restantes 33 kg/ha na diferenciação da panícula.
Então no plantio, será aplicado 10 kg de N, 60 kg de P2O5 e 70 kg de K2O. Temos uma relação entre os nutrientes de 10-60-70. Vamos simplificar esta relação dividindo todos pelo menor número; neste caso, 10. Obtemos uma relação simplificada 1-6-7. Para achar as fórmulas similares, basta multiplicar esta relação por coeficientes (2,3,4,...8).
Por exemplo, multiplicando por 3 a relação simplificada, teremos uma fórmula 03-18-21. Qual a quantidade em kg/ha desta fórmula para fornecer os nutrientes que o arroz precisa? É só "dividir a necessidade de qualquer nutriente – por exemplo, 10 – pelo teor respectivo do nutriente na fórmula, e multiplicar por 100". É o caso de (10/3) x 100 = 333 kg/ha. Ou (70/21) x 100 = 333 kg/ha. No quadro abaixo são apresentadas outras fórmulas similares, seguindo este raciocínio.





Estas fórmulas encontradas baseiam-se nos dados hipotéticos apresentados como espelho dos teores de nutrientes encontrados no solo, e que serviram para a execução do exercício. Na prática, é só identificar os teores de nutrientes de uma análise do solo, estabelecer as recomendações de nutrientes, elaborar a relação simplificada, e chegar às formulas de fertilizantes similares.

Convém alertar, entretanto, que os “incrementos de produtividade” dependem da utilização de sementes certificadas, o bom manejo do solo, controle de pragas e doenças, e outras práticas, são essenciais para um incremento da produção. Esquecer isto e só pensar em adubar, não resolve nada. As recomendações de adubação são uma média da resposta do arroz irrigado à adubação e ao incremento de produtividade. As dosagens devem ser ajustadas à capacidade de resposta dos cultivares a este incremento. Nada adianta utilizar altas recomendações de nutrientes visando um máximo de incremento na produção, e utilizar cultivares de arroz tradicionais, de baixa resposta.

quinta-feira, 3 de setembro de 2009

Adubação Foliar - micronutrientes nas culturas da soja e milho

Cultura da soja
De todos os micronutrientes necessários ao desenvolvimento da soja, o molibdênio (Mo) e o cobalto (Co) são os mais importantes. Eles exercem um papel fundamental na fixação do nitrogênio (N) do ar pelas bactérias do gênero Rhysobium que necessitam de ambos nutrientes. Os solos brasileiros, em geral, são pobres em molibdênio e cobalto. 0s solos dos cerrados são os mais pobres. Já os solos do Rio Grande do Sul e Paraná apresentam teores maiores de cobalto (Co) e menores de molibdênio (Mo). Daí a utilização de maiores concentrações de molibdênio. A soja responde muito bem às aplicações de molibdênio com altas produtividades. Em solos com pH abaixo de 5,5 e a soja apresentando sintomas de deficiência na fase incial de desenvolvimento, pelo amarelecimento das folhas, ocasionada pela baixa eficiência das bactérias Rhysobium na fixação do nitrogênio do ar, é resolvido com aplicações de molibdênio. A utilização em excesso de cobalto provoca um amarelecimento das folhas da soja na fase inicial de desenvolvimento. O excesso de cobalto inibe a ação do ferro (Fe).
A pesquisa, através da Embrapa, recomenda a utilização destes micronutrientes, seja no tratamento de sementes ou via foliar.
O tratamento de sementes é feito com 12 a 25 g/ha de Mo e 1 a 5 g/ha de Co. Uma aplicação média de cobalto de até 3 g/ha, é uma dose segura para evitar a fitotoxidez para a soja. Quando o molibdênio é aplicado nas sementes, ele deve preceder a inoculação das mesmas. Na aplicação foliar, utiliza-se 30 g/ha de Mo, 20-35 dias após a emergência. Uma aplicação é ótimo, se bem que os dois tratamentos (sementes e foliar) sejam importantes. Em solos arenosos deve-se usar a dose mais elevada. No caso da soja destinar-se à produção de sementes é recomendável fazer mais uma aplicação na época de enchimento dos grãos, pois estaremos garantindo teores maiores de molibdênio na semente, o que garantirá uma melhor fixação de nitrogênio do ar na próxima germinação das mesmas. Os teores de molibdênio devem ser maiores que 2 mg/kg de semente, já que de 1 a 2 mg/kg é considerado baixo. Como fonte de molibdênio solúvel em água pode-se utilizar o molibdato de amônio (54% de Mo) e o molibdato de sódio (39% de Mo). Os produtos devem ser quelatizados, pois garantem a maior estabilidade, compatibilidade com defensivos e melhor aproveitamento pelas bactérias Rhysobium e, consequentemente, pela planta.
ATENÇÃO: como o molibdênio não pode ser quelatizado isoladamente, o melhor é fazê-lo com o cobalto.
Atentar para o fato de que algumas matérias-primas de molibdênio e cobalto não podem ser utilizadas quanto a sua compatibilidade com o Rhysobium. Ler os rótulos e bulas dos produtos.
Onde existe integração lavoura-pecuária deve-se cuidar o teor de molibdênio nas pastagens. Com a elevação do pH do solo quando se faz a calagem, o Mo tem a sua disponibilidade aumentada podendo afetar o metabolismo do cobre (Cu) em ruminantes. Quando o teor de Mo nas partes aéreas das plantas atingir 5 mg/ha, deve-se suspender a sua adição ao solo.
Como no Brasil os solos são ácidos, a calagem torna-se necessária. A elevação do pH do solo torna o manganês (Mn) menos disponível para as plantas, ocorrendo os sintomas de deficiência traduzida pelo amarelecimento da planta. O manganês é responsável pelo aumento da produtividade, melhor germinação, pelos teores de proteína e óleo. Para corrigir a deficiência de manganês utiliza-se aplicações foliares de 500 g de Mn no início do florescimento. Isto soluciona o problema. Poderão ser necessárias até duas aplicações. Por sua vez, o manganês pode ser quelatizado. Entretanto, o quelato deve estar especificado no rótulo. Na complementação foliar, as doses recomendadas são de 150g/ha de quelatizado na forma de nitrato ou cloreto de manganês; 250 g/ha Mg-EDTA à base de sulfato.
Outro micronutriente, o boro (B) é aplicado via foliar na flor da soja. Isto melhora a fecundação prevenindo o abortamento de flores e vagens. Este abortamento ocasiona uma redução drástica da produtividade e a prevenção com boro evitará este sério problema. O produto deve ser aplicado antes da florada. O nutriente cálcio ajuda na função do boro. Podem ser aplicados até 500 g de boro.
Quanto aos micronutrientes cobre (Cu), ferro (Fe) e zinco (Zn) devem ser aplicados até o florescimento da plantas. O zinco emprega-se de 50 a 150 g/ha. Quanto ao cobre, a dosagem é de 50 a 100 g/ha.
Os adubos foliares que contêm Mn na sua composição, quando em misturas com herbicidas, provocam uma reação química no tanque de pulverização formando precipitados que causam entupimentos dos filtros e dos bicos dos pulverizadores. Há um prejuízo na operacionalidade das pulverizações. Consulte o seu técnico – existem no mercado produtos que foram testados e que melhoram a incompatibilidade.

A adubação foliar não é somente para a cultura da soja. O crescimento da área cultivada com algodão nos cerrados, o aumento do uso de zinco na cultura do milho, o aumento do número de pulverizações fitossanitárias na laranja e o uso de fertilizantes minerais têm contribuído para o aumento do consumo de fertilizantes foliares.

Cultura do milho
O manganês (Mn) é aplicado quelatizado e na forma de sais. Deve ser aplicado quando a planta de milho apresentar 6 folhas. Em híbridos de milho que são suscetíveis à deficiência de Mn, deve-se fazer duas aplicações.
O cobre (Cu) é empregado na dose de 400g/ha divididos em três (3) aplicações:
200g/ha no estágio de 4-5 folhas;
100g/ha no estágio de 7 folhas;
100 g/ha no estágio de 8 folhas.
Quanto ao zinco (Zn) usam-se doses de 100 a 400g/ha quelatizado e na forma de sais que são aplicados junto com inseticida para a lagarta do cartucho (entre a 4ª e 5ª folha).

quinta-feira, 6 de agosto de 2009

As perdas de óxido nitroso para a atmosfera

A aplicação de fertilizantes nitrogenados, o nitrogênio dos resíduos de animais, a fixação biológica em maior escala devido o aumento da área cultivada com leguminosas, têm contribuído para o aumento na emissão de N2O- na atmosfera. Estas emissões são devidas à desnitrificação cujo processo é NO3- >NO2- >2NO- > N2O- >N2. As formas 2NO- > N2O- >N2O- >N2. são formas gasosas perdidas para atmosfera. Em 1989, dados da FAO, com metodologia do IPCC, apontavam as emissões diretas de N2O- a partir de solos agrícolas estimadas em 2,5 Tg N, as emissões de animais de pastoreio em 1,6 Tg N, e as emissões indiretas em 1,9 Tg N - N2O-.
Tg N = teragrama de N = 10¹² g de N
A agricultura tem sido responsável pelas perdas de carbono do solo. Contribui para isto os processos de erosão e compactação do solo motivado pela aração excessiva, gradagem, desmatamento e consequente redução dos teores de matéria orgânica. A maneira de repor as perdas de carbono seria através do reflorestamento, fruticultura, cultivos de seringueira, castanhas, cacau, pastagem com melhor manejo, conservação do solo e melhor uso de fertilizantes químicos e adubações orgânicas. As emissões de N2O- na atmosfera chega a ser 10 vezes mais na cultura do milho do que na cultura do feijão. A uréia apresenta as mais elevadas emissões de N2O para a atmosfera em relação ao sulfato de amônio que são menores. As maiores emissões foram encontradas logo após a aplicação dos fertilizantes. Estudos mostraram que isto dura até três dias.
O nitrogênio na forma nítrica é perdido mais rapidamente pela desnitrificação do que o N amoniacal. A forma amoniacal tem que ser hidrolisada e a amônia formada é nitrificada e depois desnitrificada. A irrigação do solo, logo após a aplicação da uréia, pode aprofundar a mesma e reduzir as perdas por volatilização da amônia. Mas lixiviaria a parte nítrica adicionada. O sulfato de amônio, pelas suas características ácidas, foi o fertilizante que apresentou menos emissões de N2O- para o ar.

terça-feira, 4 de agosto de 2009

Hortaliças - Cálculo da adubação recomendada

As hortaliças são exigentes em nutrientes os quais devem estar disponíveis no solo. São plantas que esgotam o solo pois toda ela é colhida por inteiro. As adubações nitrogenadas contribuem para reacidificar o solo. Por isto, torna-se necessário um controle desta acidez através de análises de solos mais frequentes. A reaplicação do calcário é indispensável quando o pH do solo for menor que 6,0 e/ou V% menor que 80. A preferência deve ser para um calcário dolomítico que contém cálcio (Ca) e magnésio (Mg) e incorporado na profundidade de 20 cm de solo. A adubação pode ser feita em toda a área ou em sulcos. Para calcular a quantidade de adubo utiliza-se fórmulas conforme abaixo:

Cálculo da quantidade em g/m²: as recomendações de adubos são feitas em kg/ha. Para transformar em g/m² basta dividir a dose recomendada por 10.
Exemplo: 600 kg/ha de adubo 8-24-12 ; 600/10 = 60 g/m²
200 kg/ha de P2O5 = 200/10 = 20 g/m²
150 kg/ha de K2O = 150/10 = 15 g/m²

Cálculo para o plantio em camalhões: a adubação é feita em sulcos antes da confecção dos camalhões. Neste caso, transforma-se a recomendação de kg/ha para g/m linear de sulco. A fórmula é a seguinte:
g/m linear de sulco = (kg/ha*e) / 10
e
= espaçamento entre camalhões, em metro
Exemplo: 600 kg/ha de 8-24-12; espaçamento (e) entre sulcos: 0,80 metro
g/m linear de sulco = (600 x 0,80) / 10 = 4,8 g/m linear.

segunda-feira, 27 de julho de 2009

Eficiência dos Fertilizantes - Parte I - perdas de Nitrogênio

Nesta Parte I vamos comentar os diversos processos que se verificam com aplicação do nitrogênio no solo e as perdas deste nutriente para que no final da Parte II (fósforo mais potássio) tenhamos os índices de aproveitamento médio dos fertilizantes NPK.



Nitrificação: é um processo biológico pela ação de bactérias, em condições aeróbias e presença do N amoniacal. É a oxidação da amônia em nitratos com a formação intermediária de nitritos.
As nitrossomonas oxidam o N-NH4 para o N-NO2 (nitrito)
As nitrobacter oxidam o nitrito para N-NOOs íons de hidrogênio (H) contribuem para a acidificação do solo quando da aplicação de N amoniacal porque a nitrificação tem um efeito acidificante. Isto requer a aplicação de 2 kg de carbonato de cálcio para neutralizar a acidez de 1 kg de N-amoniacal.. O sulfato de amônio, cujo N está na forma amoniacal, necessita mais carbonato, ou seja 5 kg por causa da presença do íon sulfato. Solos bem aerados, temperaturas amenas e um pH ao redor de 6,5 ou mais favorecem a nitrificação. Em solos com baixa capacidade de troca de cátions (CTC) as aplicações de N amoniacal deve ser feita em temperaturas muito baixas. A nitrificação pára à temperatura de zero grau. Enquanto o N amoniacal ficar adsorvido aos colóides do solo, não se perde N por lavagem. Na nitrificação, os íons NO3 serão usados na denitrificação.

Denitrificação: é o processo de redução biológica do N mineral até N2. Ocorre tanto em solos com baixo suprimento de oxigênio (O2) como em solos bem drenados. É o final do ciclo do nitrogênio. O N2 fixado do ar, por via industrial ou biológica, é devolvido à atmosfera sob condições aeróbias, sendo N2O o intermediário nesse processo. Até 1980 a denitrificação era considerada a principal fonte de N2O. Mas a nitrificação também é uma fonte de N2O. Solos inundados, condições anaeróbias, temperaturas médias, relação C/N alta, grande população de bactérias favorecem a denitrificação quando o oxigênio está faltando. Apenas o N-NO3 pode ser denitrificado. O N-NH4 não pode ser e por este motivo é que se usa nitrogênio na forma amoniacal em solos cultivados com arroz irrigado. Nos solos alagados existem duas camadas: uma superficial oxidada e uma reduzida ou anaeróbica. A difusão do NH4 da camada anaeróbica para a camada aeróbica é um mecanismo de perda de N em solos alagados. O NH4 se desloca para a superfície do solo onde é nitrificado e o NO3 retorna à camada anaeróbica onde é denitrificado. O maior produto da denitrificação é o nitrogênio elementar (N2) que constitui quase 90% do produto.

Volatilização do N: quando a uréia é aplicada ao solo, em poucos dias, ela é hidrolisa por meio da enzima urease e inicia-se o processo de perda de amônia. A urease é produzida por fungos, bactérias e actinomicetos. Há formação de carbonato de amônio que se desdobra em (NH3), gás carbônico (CO2) e água. Parte do NH3 reage com os íons H+, presentes na solução do solo, resultando em NH4+. Os íons H+ dissociáveis no complexo coloidal também reagem com o NH3. A hidrólise ocorre em vários teores de umidade e quanto mais rápida ela for maior serão as perdas de NH3. Por outro lado, a medida que aumenta o pH do solo, aumenta a volatilização de NH3. No caso de uréia aplicada em cobertura, as perdas podem atingir de 50 a 80% do total de N aplicado. A uréia, bastante usada em adubação de cobertura, pelo alto teor de nitrogênio e pelo menor custo de sua unidade, tem grandes perdas por volatilização, o que compromete a sua eficiência agronômica. Principalmente em solos com baixa CTC, cobertos com palhada, baixa umidade e temperaturas altas.

Lixiviação: é um grande problema pois acarreta perdas de nutrintes pela percolação da água, da zona das raízes para as áreas mais profundas do solo tornando-os indisponíveis para as plantas. A lixiviação depende, em maior ou menor grau, da textura, estrutura, profundidade e porosidade do solo.. Os solos que apresentam alta capacidade de troca de cátions (CTC) são menos suscetíveis à lixiviação, pois os cátions estão firmemente adsorvidos aos coloides. A medida que aumenta o pH do solo, aumenta a CTC e maior número de cargas positivas para adsorver os cátions do solo. Em condições normais, apenas 5% do N do solo se encontra sob a forma de íons NH4 (amônio) e NO3 (nitrato). O nitrato, por ser um íon muito móvel no solo e baixa energia de adsorção aos coloides, é facilmente perdido por lixiviação. Trabalhos de pesquisa têm demonstrado que as perdas de N por lixiviação são maiores no sistema de plantio direto do que no sistema convencional. Isto porque no sistema de plantio direto há uma maior infiltração de água devido à melhoria na estrutura do solo ocasionada pelas coberturas vegetais. Quando se aplica uréia no solo, ela é hidrolisada pois o NH3 com a água forma NH4 e libera oxidrilas (OH-) conforme a reação:
NH3 + H2O = NH4 + OH-
O cátion NH4 é adsorvido ao solo (adorção) como acontece com os outros cátions. Esta adsorção é reponsável pela resistência do N amoniacal à lavagem. A liberação de OH- é responsável pelo aumento do pH do solo. À medida que se verifica a nitrificação o pH cai rapidamente.

Queima da palhada: quando a queima da palhada é realizada, verifica-se perdas de nutrientes por volatilização do nitrogênio na forma elementar e do enxofre (S) na forma de óxido (SO2).

Para acessar o artigo Eficiência dos fertilizantes - Parte 2 - fósforo e potássio  (clique aqui)

segunda-feira, 6 de julho de 2009

O arroz e feijão irrigados

Das fontes de nitrogênio (N) usadas na adubação de arroz e feijão irrigados, nos cerrados, não houve diferenças significativas entre a aplicação de uréia e sulfato de amônio. A uréia, por sua maior concentração de N (45%) leva vantagens do ponto de vista econômico, ou seja, custo/benefício. O custo do kg de N é muito mais barato na uréia. Para se calcular o custo do kg do nutriente contido num determinado produto segue-se as seguintes etapas:
1ª Etapa: devemos conhecer o custo de cada produto colocado na propriedade;
2ª Etapa: devemos conhecer as garantias do nutriente em cada produto, lembrando que o teor expresso do nutriente em porcentagem (%) significa para 100 kg. Por exemplo: a uréia está com uma garantia de 45% de N. Isto significa que em 100 kg de produto teremos 45 kg de N. Em 1 tonelada de uréia, isto é, 1.000 kg teremos 450 kg de N.
Por sua vez, o sulfato de amônio está sendo vendido com uma garantia de 20% de N. Em 100 kg teremos 20 kg de N. Em 1.000 kg teremos 200 kg de N;
3ª Etapa: devemos saber quanto custa a uréa e o sulfato de amônio colocado na propriedade do cliente, ou seja, preço CIF;
4ª Etapa: para saber o custo da unidade de N dos dois produtos, basta dividir o preço da tonelada de cada produto pela respectiva quantidade de N contido nestes 1.000 kg.
kg N = preço tonelada produto / quantidade de N na tonelada.
Deve-se levar em conta na adubação nitrogenada, o histórico da área, ou seja a cutura precedente, sua quantidade de biomassa e sua relação C/N
. No caso da cultura precedente seja uma gramínea, as exigências de nitrogênio serão bem maiores do que se fosse uma leguminosa. As gramíneas têm uma relação C/N maior. As leguminosas têm a capacidade de fixar o nitrogênio do ar através de bactérias do gênero risóbio que vivem em simbiose com as raízes das plantas. As leguminosas têm uma relação C/N menor e com isto podem disponibilizar mais N para a cultura posterior. Por isto é que se busca que a cultura antecedente ao plantio de lavouras de arroz e feijão irrigados seja uma leguminosa.
Quanto ao fósforo e potássio basear-se nas recomendações dos laboratórios e orgãos de pesquisa a fim de suprir o solo com as doses adequadas que garantam alcançar as produtividades esperadas. A análise do solo é importante para indicar os teores destes nutrientes no solo e ser base para a reposição dos mesmos buscando um perfeito desenvolvimento da cultura.
Devido ao baixo teor natural dos micronutrientes, nos solos de cerrados, é importante, na adubação, a inclusão dos mesmos e não pode ser esquecida. O importante é prevenir antes o aparecimento de deficiências destes micronutrientes. Uma análise de solo vai nos dar condições de verificar a fertilidade destes solos e suprir as deficiências naturais de maneira correta.
O arroz tolera mais a acidez do solo. Mas isto não quer dizer que devemos dispensar a aplicação de corretivos. Pelo contrário, o cálcario dolomítico é importante como fonte de cálcio (Ca) e magnésio (Mg). A correção da acidez de maneira inadequada tem contribuido para a redução dos micronutrientes. As deficiências de zinco (Zn) e ferro (Fe) são as mais comuns em arroz quando plantado após feijão e soja. O calcário aplicado em excesso eleva o pH do solo tornando menor a disponibilidade dos micronutrientes. "A medida que aumenta o pH diminui a disponibilidade dos micronutrientes". Recomenda-se a aplicação de calcário para manter o pH na faixa de 5,8 - 6,0 para culturas precedentes como milho, soja, feijão que são exigentes em Ca e Mg.
Para maior resistência às doenças, como a bruzone, está sendo estudada a aplicação de silício (Si) na forma de silicatos. Além de diminuir o grau de severidade da doença tem proporcionado aumento no crescimento da planta.

segunda-feira, 29 de junho de 2009

A análise de plantas

A análise de plantas nada mais é do que analisar uma planta ou parte dela com o objetivo de determinar o teor de nutrientes supridos. A concentração de nutrientes não é a mesma durante toda a fase vegetativa da planta. Estas concentrações mudam rapidamente. Muitas vezes o stresse da planta pela falta de água mascara a suficiência ou a deficiência de nutrientes. Outro fator importante é a idade da planta que pode mostrar deficiência de um nutriente. Existem três tipos de análises de plantas:
1. Análise de tecidos - são análises feitas a campo usando indicadores de papel, reagentes em pó ou soluções. Estes materiais reagem com as substâncias presentes na seiva. Como são feitos à luz do dia e sob condições de umidade, os resultados podem não ser concretos. Por exemplo, os nitratos absorvidos pelas plantas continuam a ser processar à noite ou mesmo em dias nublados. A luz solar, em geral, reduz o teor de nitratos. Por isto, para evitar problemas com altos teores de nitratos em forrageiras deve-se esperar os dias claros, ensolarados antes de cortar as plantas para silagem ou feno.
2. Análise química - envolve a queima das plantas para analisar-se as cinzas. Estas são preparadas em soluções químicas (para provocar o aparecimento de cores) e lidas através do colorímetro ou de um fotômetro de chama ou de um espectrômetro de absorção atômica. Este último determina muitos elementos de maneira mais rápida.
3. Espectrografia de emissão de raios X - o princípio usado é que os primeiros raios X do tubo alvo fazem com que os nutrientes da amostra da planta produzam raios X secundários. Cada nutriente tem um comprimento de onda e níveis de energia individual.

Quanto à interpretação, os laboratórios e orgãos de perquisa em suas recomendações classificam as concentrações de nutrientes nas plantas em diversas faixas: deficientes, muito baixo, médio, suficiente, alto, em excesso, etc... É claro que os valores são diferentes para cada cultura e dentro de cada uma delas pelas variedades utilizadas. Nas plantas, as partes delas podem influenciar nas concentrações de nutrientes. Por exemplo, os teores de nitrogênio nas folhas podem ser diferentes do teor no caule. A análise das plantas é também de extrema importância para determinar os níveis de toxidez dos nutrientes. O molibdênio, em certos níveis, nas forrageiras, é tóxico para os animais. Segundo Kubota, J et al, o cobre deve ser avaliado em conjunto com o molibdênio porque a toxidez deste nutriente em ruminantes é uma deficiência de cobre. Ou seja, deficiência de cobre produzida por um excesso de molibdênio. Assim, é importante conhecer as interações entre os nutrientes. Os sintomas visíveis de deficiência podem ser determinados . Mas lembre-se que quando os sintomas de deficiência são visíveis a planta já foi muito prejudicada e, consequentemente, a produtividade.
Um produtor pode aplicar uma dosagem adequada de nitrogênio por hectare e, no entanto, podem aparecer deficiências deste nutriente em algum estágio da cultura. Constatou-se que locais onde apareciam as deficiências eram ao redor dos bicos de irrigação por aspersão e nas áreas onde havia sobreposição das áreas irrigadas por dois bicos. Foram feitas análises de solo e constatou-se que os nitratos haviam sido arrastados para as camadas mais profundas atingindo até 1,20 de profundidade. Claro que o nitrogênio ficou fora do alcance das raízes. O solo continha nitrogênio mas este estava longe da área de absorção pelas raízes das plantas. O solo apresentava uma estrutura permeável. A irrigação era para ser feita com mais frequencia e em leves quantidades para impedir que os nitratos fossem arrastados para as camadas mais profundas. Por sua vez, o nitrogênio deveria ser aplicado em doses mais baixas, antes do plantio, aliado à coberturas ou junto com a irrigação em intervalos que não permitissem uma deficiência deste nutriente no solo ou dos nitratos descerem para as profundidades do solo.
As amostragens dos solos devem ser feitas tantas quantas as das plantas para acompanhamento da fertilidade com o passar dos anos. As deficiências de nutrientes que ainda não são graves - chamadas "fome escondida" - são detectadas pela análise de planta ou dos tecidos das plantas. Se compararmos os resultados das análises das plantas com as do solo, sistema de irrigação usado, espécies de plantas, estágio do desenvolvimento da cultura, temos as possibilidades de identificar os problemas com maior precisão. Na amostragem devemos tomar uma série de cuidados para evitar erros nos resultados e na interpretação dos mesmos:
1. forrageiras de diversos tamanhos devem ser amostradas em separado;
2. sabemos que os nutrientes nitrogênio (N), potásio (K) e outros são móveis na planta, e vão dos tecidos velhos para os tecidos novos fazendo com que a concentração destes nutrientes seja maior nas folhas novas e baixa nas folhas velhas. O contrário também prevalece com os nutrientes não tão móveis na planta: concentração maior nas folhas velhas e baixa nas folhas jovens.
Recomenda-se que sejam coletadas amostras de solo e de plantas nas áreas de crescimento normal e em áreas que apresentam problemas. Evite a coleta de amostras de folhas muito empoeiradas que pode comprometer os resultados das análises. Se não for possível, deve-se adotar estes procedimentos:
a) com a amostra ainda fresca, lave-a em água destilada ou água mole por 1 a 2 minutos. Não deixe as plantas permanecerem na água por muito tempo pois pode haver perdas de nutrientes solúveis;
b) remova a água com papel absorvente ou deixe que seque ao ar;
c) remeta as amostras quando secarem, em sacos de papel. Evite a utilização de sacos plásticos que podem ocasionar o aparecimento de mofo.

Fonte: Métodos de diagnóstico - Prof. Charles M Smith, Universidade de Montana - publicado no Manual de Fertilizantes - IPT/CEFER