Mostrando postagens com marcador nutrientes das plantas. Mostrar todas as postagens
Mostrando postagens com marcador nutrientes das plantas. Mostrar todas as postagens

segunda-feira, 13 de julho de 2009

A água do Solo - Parte II

Na postagem anterior, Parte I verificamos ocomportamento da água no solo, a necessidade de um melhor desenvolvimento do sistema radicular, a capacidade da planta e do solo em reter água. Na Parte II, teremos a oportunidade de analisarmos os mecanismos de transporte e absorção dos nutrientes do solo.

Como se verifica a absorção e transporte de íons.

1. Interceptação pelas raízes ou “captação pelas raízes”
. Depende do desenvolvimento do sistema radicular da planta que, por sua vez, depende de um nível adequado de umidade. Ela é importante para os nutrientes não móveis como o cálcio e o magnésio. Este mecanismo se verifica quando a raiz cresce e encaminha os nutrientes que são absorvidos. A interceptação de raízes facilita a ação dos outros mecanismos de transporte: a difusão e o fluxo de massa.

2. Fluxo de massa. Se verifica quando o nutriente é carregado de um local de maior potencial de água para um de menor potencial, próximo das raízes. Existe um potencial de água no solo maior que aquele junto à raiz. A transpiração da planta é que causa esta diferença de potencial e que acarreta o movimento de massa da água em direção à raiz carregando os íons que se encontram na solução do solo. O fluxo de massa segue o fluxo de absorção e perda de água da planta. Resulta das perdas de quantidades de água pelas folhas, sendo ponto de partida para uma complexa série de “gradientes de concentração” desde a superfície das folhas até chegar à superfície do sistema radicular. Os nitratos e sulfatos são exemplos de nutrientes absorvidos por este mecanismo.

3. Difusão. O nutriente entra em contato com a raiz ao passar de uma zona de maior concentração para uma de menor concentração, próxima à raiz. O fósforo e o potássio estão firmemente adsorvidos ao solo e, consequentemente, em baixo teor na solução do solo. A difusão passa a ser o mecanismo de transporte. Ocorre quando a absorção é superior à chegada do nutriente à superfície da raiz. Cria-se um gradiente de concentração que proporciona a difusão dos nutrientes. Na presença da água, os íons que estão mais longe são arrastados para mais perto. Este processo é mais rápido em solos com umidade. Se o teor de umidade decresce no solo, a absorção de fósforo, pelas pequenas plantas de milho, é reduzida. A aplicação de fertilizantes em áreas úmidas do solo, ocupadas pelas raízes, provoca uma melhora na absorção dos nutrientes em relação à aplicação em um solo seco. Por isto, a vantagem de incorporar o fertilizante com aração, e coberturas seguidas de irrigação ou tempo para chuva.

A fertilização adequada aliada a outras técnicas corretas, aumenta a produtividade das culturas por unidade de água disponível, por uma série de fatores:
a. o crescimento inicial das plantas é melhorado e com isto a área foliar aumenta e uma melhor fotossíntese;
b. o desenvolvimento do sistema radicular é maior, com raízes mais profundas que vão buscar água a maiores profundidades no solo além de suportar melhor os períodos de seca;
c. aumento da cobertura vegetal que torna menores as perdas por escorrimento (erosão), facilitando uma maior infiltração de água.
d. acelera a maturidade das plantas e com isto faz com que o período que ficarão dependentes de água seja menor.

terça-feira, 7 de julho de 2009

A água do Solo - Parte I

No seu processo de crescimento e produção, as plantas exigem grandes quantidades de água. A água é o elemento vital para levar os nutrientes às raízes e, a partir destas, a translocação pela planta. A água é uma das matérias primas para a fotossíntese.
O solo é um meio dinâmico sujeito às transformações químicas e bioquímicas dissolvendo matérias que farão parte da solução do solo. Esta solução fornece água para as raízes e é importante o processo de troca de nutrientes entre o sistema radicular e o sistema sólido. No solo, os nutrientes estão dissolvidos na forma de íons positivos (cátions) e íons negativos (ânions). Entre os cátions temos H+, Ca²+, Mg²+, K+ e os micronutrientes Fe²+, Mn²+, e o Al³+. O Fe³+ pode se apresentar parcialmente hidrolisado em FeOH. Os ânions presentes são: HCO³¯, CO3²¯, HSO4¯, Cl¯. As plantas desenvolvem melhor em solos com pH entre 6-6,5. Num solo ácido deve ser feita a correção da acidez com calcário.

Swarowsky, A et alli, concluíram que no arroz irrigado por inundação, a incorporação de palha de azevém aumentou a concentração de K+ na solução de superfície do solo – lâmina de água – e favoreceu o deslocamento do Ca, Mg, Mn, Na e Zn, no perfil do solo.O espaço poroso do solo é constituído por ar e água do solo. O ar fornece o oxigênio que é importante para a respiração das raízes e microorganismos e precisa ser renovado constantemente para que não haja excesso de CO2. O solo possui poros de maior tamanho chamados macroporos, e os de menor tamanho, os microporos. O ar do solo ocupa os macroporos enquanto que a água e os íons orgânicos e inorgânicos em solução (solução do solo) ocupam os microporos. A água das chuvas ou de irrigação caindo no solo, uma parte é aproveitada pelas raízes e outra parte infiltra-se no solo ou escorre na superfície. Da água que penetra no solo, parte retorna à atmosfera pelo processo de evaporação do solo ou pela transpiração da planta. O restante da água ficará acumulada nas profundezas do solo formando o lençol freático ou armazenada no perfil (horizontes) do solo. A água armazenada no solo é muito importante pois será o meio aquoso para os nutrientes solúveis do solo, levando-os através das raízes para as plantas. Mas, este armazenamento e infiltração pode depender da estrutura dos sólidos. Os solos arenosos, ricos em macroporos, permitem uma infiltração mais rápida da água e, consequentemente, haverá pouca retenção. Há uma drenagem livre da água. Já os solos argilosos, ricos em microporos, conseguem reter a água não permitindo uma rápida infiltração da mesma. Entretanto, pela compactação, estão sujeitos a um maior escorrimento superficial da água provocando a erosão. A compactação reduz o movimento de ar e água, através do solo, pela redução do espaço poroso. Os solos argilosos dependem do tipo de argila e podem ter alta, média ou baixa capacidade de retenção de água. Solos com baixa capacidade de retenção de água necessitam do uso de irrigação com maior frequencia. As plantas que possuem um sistema radicular mais profundo conseguem buscar água. A melhoria da fertilidade do solo, pela calagem e aplicação de adubos, faz com que o sistema radicular da planta se desenvolva melhor e se aprofunde no solo. As deficiências em nutrientes são maiores num período de seca e desaparecem durante as chuvas. A cana-de-açúcar apresenta entrenós curtos alternados com entrenós longos. O período de seca favorece o desenvolvimento de entrenós curtos e o período de umidade, de água no solo, o aparecimento de entrenós longos.A raiz absorve os nutrientes que estão ao seu alcance e com o passar do tempo há um decréscimo na absorção. Os nutrientes que estão longe da área de absorção precisam de água, como veículo, para chegarem até às raízes. É claro que os nutrientes devem estar nas suas formas iônicas, dentro da solução do solo, para serem absorvidos pelas plantas. O alumínio tóxico, em solos ácidos, está presente na solução do solo na forma de íon, sendo absorvido, translocado dentro da planta, causando problemas de toxicidade com graves prejuízos à produtividade. Quando o solo é corrigido, ele se precipita na forma de sais insolúveis que não entram na solução do solo e, portanto, não é absorvido pela planta.
A transpiração é a água evaporada pela superfície das folhas e resulta em grandes perdas de água pelas plantas. O ciclo da água é do ar para o solo, para as plantas e de novo para o ar. A evaporação necessita de energia, pois um grama de água requer 580 calorias de energia. As plantas murcham quando as células das folhas e do caule não dispõem de água em quantidade suficiente para manter a turgidez das mesmas. O stresse provocado pela falta de água retarda o crescimento, restringe o alongamento e a divisão celular.
A evapo-transpiração é a transpiração pela planta e evaporação pelo solo. As perdas por evaporação pelo solo são estimadas em 25 a 50%. A transpiração é usualmente expressa como a relação entre a quantidade de água transpirada pela planta para cada unidade de peso produzida de matéria seca da parte aérea. Esta relação varia de 125 a 550 kg de água por quilo de matéria seca.
As plantas não têm capacidade de armazenar água. Os cactos contrariam esta regra. Ela depende da capacidade do solo de reter água. Os solos têm um limite máximo e mínimo de armazenar água disponível para as plantas. O limite superior (máximo) é chamado “capacidade de campo” e é expressa como um percentual de peso do solo. A capacidade de campo é a quantidade de água que o solo seco retém 48 horas após ser molhado. É a água que sobra após a drenagem. O limite inferior (mínimo) é o "ponto de murchamento permanente" que é a porcentagem de umidade na qual as plantas murcham definitivamente. A água está tão presa ao solo que as plantas não têm capacidade de absorvê-la, em quantidades suficientes, para sobreviver. A faixa entre a capacidade de campo e o ponto de murchamento expressa a “disponibilidade” ou a “capacidade de retenção de água” do solo. Os diversos solos possuem propriedades que afetam esta capacidade como: textura, estrutura do solo, o teor de argilas, o teor de matéria orgânica e outras. A capacidade de retenção de água aumenta à medida que aumenta o teor de matéria orgânica e de silte.
A água de irrigação deve ser usada de maneira eficiente. A produção de um quilo de peso seco de plantas, precisa de centenas de quilos de água. Entretanto, esta necessidade de água é menor quando a produtividade aumenta através da fertilização, práticas agrícolas de acordo com a tecnologia, controle de pragas e doenças, uso de variedades com alta capacidade de produção, etc.
Uso eficiente de água = produção da cultura / evapo-transpiração da cultura
A produção da cultura pode ser alterada enquanto a evapo-transpiração é uma constante. A evapo-transpiração é, em geral, determinada pela quantidade de água disponível e a quantidade de energia calorífica recebida durante um período de crescimento. A quantidade de água disponível é a água do solo mais precipitações. Portanto, a produtividade da cultura é que vai determinar a eficiência do uso da água.

segunda-feira, 29 de junho de 2009

A análise de plantas

A análise de plantas nada mais é do que analisar uma planta ou parte dela com o objetivo de determinar o teor de nutrientes supridos. A concentração de nutrientes não é a mesma durante toda a fase vegetativa da planta. Estas concentrações mudam rapidamente. Muitas vezes o stresse da planta pela falta de água mascara a suficiência ou a deficiência de nutrientes. Outro fator importante é a idade da planta que pode mostrar deficiência de um nutriente. Existem três tipos de análises de plantas:
1. Análise de tecidos - são análises feitas a campo usando indicadores de papel, reagentes em pó ou soluções. Estes materiais reagem com as substâncias presentes na seiva. Como são feitos à luz do dia e sob condições de umidade, os resultados podem não ser concretos. Por exemplo, os nitratos absorvidos pelas plantas continuam a ser processar à noite ou mesmo em dias nublados. A luz solar, em geral, reduz o teor de nitratos. Por isto, para evitar problemas com altos teores de nitratos em forrageiras deve-se esperar os dias claros, ensolarados antes de cortar as plantas para silagem ou feno.
2. Análise química - envolve a queima das plantas para analisar-se as cinzas. Estas são preparadas em soluções químicas (para provocar o aparecimento de cores) e lidas através do colorímetro ou de um fotômetro de chama ou de um espectrômetro de absorção atômica. Este último determina muitos elementos de maneira mais rápida.
3. Espectrografia de emissão de raios X - o princípio usado é que os primeiros raios X do tubo alvo fazem com que os nutrientes da amostra da planta produzam raios X secundários. Cada nutriente tem um comprimento de onda e níveis de energia individual.

Quanto à interpretação, os laboratórios e orgãos de perquisa em suas recomendações classificam as concentrações de nutrientes nas plantas em diversas faixas: deficientes, muito baixo, médio, suficiente, alto, em excesso, etc... É claro que os valores são diferentes para cada cultura e dentro de cada uma delas pelas variedades utilizadas. Nas plantas, as partes delas podem influenciar nas concentrações de nutrientes. Por exemplo, os teores de nitrogênio nas folhas podem ser diferentes do teor no caule. A análise das plantas é também de extrema importância para determinar os níveis de toxidez dos nutrientes. O molibdênio, em certos níveis, nas forrageiras, é tóxico para os animais. Segundo Kubota, J et al, o cobre deve ser avaliado em conjunto com o molibdênio porque a toxidez deste nutriente em ruminantes é uma deficiência de cobre. Ou seja, deficiência de cobre produzida por um excesso de molibdênio. Assim, é importante conhecer as interações entre os nutrientes. Os sintomas visíveis de deficiência podem ser determinados . Mas lembre-se que quando os sintomas de deficiência são visíveis a planta já foi muito prejudicada e, consequentemente, a produtividade.
Um produtor pode aplicar uma dosagem adequada de nitrogênio por hectare e, no entanto, podem aparecer deficiências deste nutriente em algum estágio da cultura. Constatou-se que locais onde apareciam as deficiências eram ao redor dos bicos de irrigação por aspersão e nas áreas onde havia sobreposição das áreas irrigadas por dois bicos. Foram feitas análises de solo e constatou-se que os nitratos haviam sido arrastados para as camadas mais profundas atingindo até 1,20 de profundidade. Claro que o nitrogênio ficou fora do alcance das raízes. O solo continha nitrogênio mas este estava longe da área de absorção pelas raízes das plantas. O solo apresentava uma estrutura permeável. A irrigação era para ser feita com mais frequencia e em leves quantidades para impedir que os nitratos fossem arrastados para as camadas mais profundas. Por sua vez, o nitrogênio deveria ser aplicado em doses mais baixas, antes do plantio, aliado à coberturas ou junto com a irrigação em intervalos que não permitissem uma deficiência deste nutriente no solo ou dos nitratos descerem para as profundidades do solo.
As amostragens dos solos devem ser feitas tantas quantas as das plantas para acompanhamento da fertilidade com o passar dos anos. As deficiências de nutrientes que ainda não são graves - chamadas "fome escondida" - são detectadas pela análise de planta ou dos tecidos das plantas. Se compararmos os resultados das análises das plantas com as do solo, sistema de irrigação usado, espécies de plantas, estágio do desenvolvimento da cultura, temos as possibilidades de identificar os problemas com maior precisão. Na amostragem devemos tomar uma série de cuidados para evitar erros nos resultados e na interpretação dos mesmos:
1. forrageiras de diversos tamanhos devem ser amostradas em separado;
2. sabemos que os nutrientes nitrogênio (N), potásio (K) e outros são móveis na planta, e vão dos tecidos velhos para os tecidos novos fazendo com que a concentração destes nutrientes seja maior nas folhas novas e baixa nas folhas velhas. O contrário também prevalece com os nutrientes não tão móveis na planta: concentração maior nas folhas velhas e baixa nas folhas jovens.
Recomenda-se que sejam coletadas amostras de solo e de plantas nas áreas de crescimento normal e em áreas que apresentam problemas. Evite a coleta de amostras de folhas muito empoeiradas que pode comprometer os resultados das análises. Se não for possível, deve-se adotar estes procedimentos:
a) com a amostra ainda fresca, lave-a em água destilada ou água mole por 1 a 2 minutos. Não deixe as plantas permanecerem na água por muito tempo pois pode haver perdas de nutrientes solúveis;
b) remova a água com papel absorvente ou deixe que seque ao ar;
c) remeta as amostras quando secarem, em sacos de papel. Evite a utilização de sacos plásticos que podem ocasionar o aparecimento de mofo.

Fonte: Métodos de diagnóstico - Prof. Charles M Smith, Universidade de Montana - publicado no Manual de Fertilizantes - IPT/CEFER

terça-feira, 23 de junho de 2009

A importância dos Micronutrientes

As deficiências de micronutrientes devem ser corrigidas antes que elas apareçam. Devem ser aplicados fontes de micronutrientes mais cedo e misturadas com uma fonte de nitrogênio, pois os resultados são melhores.

Boro - este micronutriente tem papel importante na divisão celular, formação dos frutos, metabolismo dos carboidratos, das proteínas, viabilidade do polem. Os sintomas de deficiência de boro em algumas espécies são:
1. alfafa - o crescimento da planta é prejudicado, a produção de sementes é pequena e as folhas apresentam uma coloração amarelo brilhante.
2. pêssego - os brotos terminais morrem, as folhas têm as bordas enroladas e os botões mortos.
3. maçã - apresenta tecidos duros e enrugados, interna e externamente.
4. citros - as quedas dos frutos são em grande proporções e amarelecimento das nervuras das folhas.
5. algodão - queda excessiva de botões florais.
6. amendoim - cascas deformadas e com pontos pretos.
O baixo nível de umidade diminui a disponibilidade do boro. Os boratos de sódio são as principais fontes de boro. O excesso de boro aplicado no solo é prejudicial às plantas. Nos solos arenosos com baixo teor de matéria orgânica aparecem deficiências de boro.
O boro é importante para o cafeeiro pois influi no crescimento e no pegamento da florada. Mas o boro em excesso ele causa toxidez severa nas plantas jovens de café devido à pequena área foliar que elas apresentam. As plantas apresentam folhas manchadas de verde-amarelado e, em casos graves, aparecem manchas escuras e até queima total das bordas das folhas. O teor adequado de boro nas folhas é de 40 a 80 ppm e na toxidez este teor é maior do que 200 ppm. Devido a baixa translocação do boro, passado a toxidez, as folhas novas que crescem já o fazem de maneira normal. Nos cafezais, a dose indicada de boro é de 2 a 6 kg/ha. No plantio pode-se usar de 2 a 5 gramas por cova ou metro de sulco.
A correção das deficiências se faz com o produto Borax usando 20 kg/ha ou por via foliar usando o ácido bórico (H3BO3).
O boro é absorvido pelas plantas na forma de H3BO3.

Cobre - é um dos nutrientes necessário à formação da clorofila. O clima influi na disponibilidade de cobre. Altas temperaturas e altos níveis de umidade são desfavoráveis à liberação do cobre pela matéria orgânica do solo. Os sintomas de deficiência de cobre nas plantas são:
1. citros - surgem folhas amarelas e os ramos novos morrem.
2. cereais - folhas amareladas nas bordas, pontas secas e torcidas.
3. milho - amarelecimento entre as nervuras das folhas.
4. verduras - morte das folhas.
O cobre reage com a matéria orgânica formando compostos que não estão disponibilizados para as plantas imediatamente. Em solos com alto teor de matéria orgânica, as deficiências de cobre aumentam e a reposição deve ser feita anualmente. Existe incompatibilidade quando são mituradas fontes de cobre com os fertilizantes. As formas insolúveis de cobre podem melhorar a sua solubilidade quando incorporadas aos adubos granulados (NPK no grão). Os fosfatos de amônio, presentes nos fertilizantes fluidos, reagem com o sulfato de cobre formando compostos insolúveis.
Para corrigir as deficiências provocadas pelo cobre, recomenda-se a aplicação de sulfato de cobre (CuSO4) na faixa de 5 a 10 kg/ha.
As plantas absorvem o cobre na forma de íon Cu²+.

Ferro - sua deficiência aparece melhor em solos calcários, principalmente em citros, cereais, feijões, frutas, nozes e gramados. Sua baixa quantidade no solo acarreta uma baixa produção de clorofila. Os sintomas de deficiência são o aparecimento de um amarelecimento entre as nervuras de folhas novas. No sorgo, quando a deficiência é muito grande, as folhas se apresentam quase brancas. Estas deficiências são combatidas com aplicações foliares. No caso de deficiências muito severas deve-se mudar o tipo de cultura para uma mais tolerante. No RS é comum nas lavouras de arroz irrigado aparecerem "toxidez de ferro".
Em solos oxidados, a forma de absorção é o íon Fe³+. As plantas excretam substãncias orgânicas que reduzem o Fe³+ para Fe²+ que também é a forma mais comum de absorção.
A correção das deficiências se faz com sulfato de ferro (FeSO4) ou quelatos.

Manganês - está presente, também, na clorofila, na produção de carboidratos e no metabolismo do nitrogênio nas plantas. A quantidade de manganês influencia a de ferro na planta. Altos níveis de manganês reduzem os níveis de ferro. Os cereais, os feijões, o milho são muito sensíveis à deficiência de manganês. Os sintomas de deficiência são semelhantes a do ferro. A aplicação de fontes de manganês deve ser feita cedo pois os resultados são melhores do que quando ela se manifesta nas folhas. Deve-se preferir as pulverizações foliares. As fontes orgânicas de manganês são mais eficientes do que as inorgânicas. O manganês tem grande afinidade pelo ferro natural do solo tendendo a substituí-lo. Por isto deve-se preferir os sulfatos ou óxidos em solos com alto teor de ferro. No RS é muito comum a toxidez de manganês em solos ácidos.
O manganês é absorvido pelas plantas na forma de íon Mn²+.

Molibdênio - é importante para a fixação de nitrogênio (N) pelas bactérias do gênero risóbio, que vivem nos nódulos das raízes de leguminosas e no metabolismo do N nas plantas. Os sintomas de deficiência são semelhantes às apresentadas pelo nitrogênio. As crucíferas sofrem bastante com a falta de molibdênio (Mo). A deficiência, nestas culturas, se caracteriza por folhas longas, estreitas e irregulares - é chamada de "chicote". Na soja, alfafa e trevos, a deficiência de Mo torna-se muito séria. Nos citros aparecem pontos amarelos nas folhas e se a deficiência for muito severa estes pontos amarelos morrem e as folhas caem. A deficiência de molibdênio é comum em solos ácidos e muito lixiviados. A calagem corrige facilmente esta falta de molibdênio. Entretanto, o excesso de molibdênio é tóxico para os animais e plantas em germinação, além de prejudicar a absorção e as translocações do ferro pelas plantas.
A correção das deficiências se faz utilizando o molibdato de amônio de 0,5 a 1,0 kg/ha.
O molibdênio é absorvido pelas plantas na forma de HMoO4.

Zinco - em solos com baixo teor de zinco (Zn) disponível a aplicação de fosfatados deve ser feita em cobertura total. A aplicação em sulcos ou ao lado das fileiras acarreta deficiências deste micronutriente. A rotação de culturas pode favorecer o aparecimento de sintomas de deficiência. O zinco é importante no desenvolvimento dos botões florais, na produção de grãos e sementes, bem como influi na velocidade de maturação das plantas e sementes. Os sintomas de deficiência em algumas culturas são:
1. leguminosas - aparecimento de pontos pequenos de coloração bronzeada nas folhas mais velhas.
2. frutas - há um crescimento retardado dos brotos terminais, formação de roseta de ramos, folhas estreitas e amarelas entre as nervura.
3. milho - aparecimento de listas amarelas nos dois lados das folhas, no meio, iniciando nas folhas velhas.
4. sorgo - a produção de grãos é reduzida drasticamente.
As aplicações de fontes de zinco serão feitas cedo no solo e nas folhas. A realização desta prática , antes de aparecerem os sintomas, é importante para garantir altas produtividades das culturas e boas safras.
As deficiências de zinco são combatidas com a aplicação de sulfato de zinco (ZnSO4) na faixa de 5 a 10 kg/ha.
As plantas absorvem o zinco na forma de íon Zn²+.

De qualquer forma, a análise do solo e foliar são muito importantes para determinar os teores de micronutrientes no solo e nas folhas para corrigir as deficiências. Vale, antes de tudo, a aplicação preventiva, na época do plantio, com a utilização de fertilizantes que têm os micronutrientes incorporados no mesmo grão para um melhor aproveitamento pelas plantas. É preferível colocar antes do que remediar depois, com possíveis decréscimos na produção das culturas.

segunda-feira, 22 de junho de 2009

Os macronutrientes secundários

O cálcio, o magnésio e o enxofre são macronutrientes importantes para o crescimento e produção das culturas. O cálcio e o magnésio estão presentes no calcário dolomítico e são indispensáveis na correção da acidez do solo. Já o enxofre (S) tem um efeito primordial em solos alcalinos.

Cálcio - este nutriente ajuda a aumentar a produtividade das culturas pelo melhor crescimento das raízes, aumento da atividade microbiana, aumento da disponibilidade de molibdênio (Mo) e a absorção de alguns nutrientes. O aumento da área das raízes favorece uma melhor absorção de nutrientes que estão disponíveis numa área maior de solo. O cálcio reduz a solubilidade e a toxidez do manganês, cobre e alumínio. As plantas bem supridas de cálcio suportam melhor a toxidez causada pelo alumínio. O calcário é a principal fonte de cálcio junto com o gesso. A deficiência de cálcio provoca uma má formação dos grãos e folhas novas enroladas no milho. Os sintomas de deficiência deste nutriente se manifesta pelo desenvolvimento de um sistema radicular pequeno, as raízes ficam escuras e apodrecem. Como é pouco móvel na planta aparecem sintomas de deficiência nas folhas jovens. Daí a necessidade de um suprimento de cálcio contínuo pelo solo. Os solos argilosos apresentam maiores teores de cálcio do que os solos arenosos. Para os solos ácidos recomenda-se o calcário e para os solos alcalinos, o gesso (sulfato de cálcio) ou fertilizantes que apresentam os nutrientes no grão (NPK no grão) que contenham o cálcio para liberação rápida. O cálcio é absorvido na forma Ca²+.

Magnésio - o teor de magnésio no solo é menor que o de cálcio. Por ser muito solúvel está sujeito às perdas por lixiviação. O magnésio faz parte da clorofila. Sua deficiência provova um amarelecimento entre as nervuras das folhas velhas. No algodão, aparece uma cor avermelhada entre as nervuras verdes. Em forragens pobres de magnésio, os animais sofrem a "tetania dos pastos". Sua deficiência é mais nítida em solos ácidos.

Enxofre - a matéria orgãnica do solo é a maior fonte de enxofre (S), bem como o íon sulfato presente no complexo de trocas. O enxofre é absorvido pelas plantas como íon sulfato (SO3). O enxofre contido na atmosfera é uma das maiores fontes . Em solos com pH acima de 7,0 o enxofre não é facilmente aproveitado pelas plantas. Ele precipita-se como sulfato de cálcio insolúvel. Sua deficiência nas folhas é semelhante à do nitrogênio, com um amarelo pálido ou verde suave. O enxofre pode ser fornecido pelo óxido de enxofre, do ar, que entra nas folhas pelos estômatos. O enxofre ajuda a desenvolver enzimas, promove a nodulação para a fixação do N do ar pelas leguminosas, melhora a qualidade das sementes e é a fonte de proteínas e aminoácidos, como cistina, cisteína e metionina.
O superfosfato simples, além do fósforo, contém , também, enxofre na sua composição com um teor de 10-12% . O gesso, que é um sub-produto da fabricação do super simples, apresenta 12-18% de enxofre. Recomenda-se combinar a aplicação em cobertura de N e S conjuntamente. Existe no mercado nacional, fertilizantes que são a combinação de uréia com uma fonte de enxofre para ser usado em cobertura. Esta mistura fertilizante garante benefícios pois há um melhor aproveitamento do nitrogênio (N) do que quando a uréia é aplicada isoladamente, diminui as perdas por volatilização do N e apresenta menor custo benefício por hectare.
No solo 90% do enxofre está na forma orgânica. Solos com baixa matéria orgânica apresentam deficiências de enxofre. Os solos no Brasil são de baixo teor de enxofre, possivelmente causado pelas altas produções da culturas, de modo contínuo, pelas queimadas que causam a volatilização do S, pela alta relação C/S que dificulta a mineralização. Na mineralização, muitos fungos e bactérias atuam no processo que é muito importante. A utilização da matéria orgânica pelos microorganismos pode ocorrer tanto em condições aeróbias, cujo produto final são SO4²- e condições anaeróbias com H2S. As formas de enxofre encontradas no ar como SO2, H2S e SO2²- são formas gasosas e fontes muito importantes de S para as plantas. A decomposição das plantas libera dióxido de enxofre na atmosfera que aumenta a acidez da água da chuva, conhecida como "chuva ácida".
As plantas de milho apresentam maior absorção radicular de enxofre do que as plantas de soja, além de reter grande parte deste nutriente na raíz. Davi José Silva e outros, concluiram através de pesquisas que as plantas de milho apresentam maior absorção radicular de S do que as plantas de soja, além de reter grande parte deste nutriente na raiz. No milho, o enxofre aplicado a uma folha é transportado para o caule e para as raízes. Na soja, o enxofre absorvido tanto pela raiz quanto pela folha é transportado, em maior proporções, para as folhas superiores redistribuindo para outras partes da planta.
Em solos bem drenados, formas reduzidas são oxidadas a SO4²-, forma inorgânica e absorvida pelo sistema radicular. Porém as formas reduzidas, os sulfetos e H2S são importantes nos solos alagados e anaeróbios. Em condições de má drenagem existe o acúmulo de sais solúveis de enxofre. Nos solos alcalinos ou calcários existe as formas insolúveis.
As entradas de S no solo se dá através das chuvas e irrigação, pela mineralização das formas orgânicas, pelo intemperismo das rochas, e através dos fertilizantes.
As saidas de S do solo se verifica pela emissão de gases, pela adsorção, pela erosão, pela lixiviação, pela imobilização e pela absorção pelas plantas.

segunda-feira, 15 de junho de 2009

A importância do trio NPK

O nitrogênio (N) é um dos componentes dos aminoácidos ocupando o centro das moléculas de proteínas. Faz parte, também, da clorofila. Junto com o magnésio (Mg) são os únicos componentes da clorofila, que provém do solo. O nitrogênio (N) é o responsável pelo desenvolvimento vegetativo. Um suprimento generoso de N ocasiona um crescimento vigoroso da planta. Este nutriente tem um papel importante na divisão celular. Se a divisão celular diminuir de velocidade ou mesmo parar, o mesmo acontecerá com o número de folhas verdes expostas à luz solar. E, é óbvio, a planta com uma menor área foliar irá produzir menos. A adubação com nitrogênio (N) é importante pois melhora a qualidade dos grãos, aumenta a produtividade e o teor de proteína. Quando o nitrogênio é aplicado em excesso e a planta não consegue aproveitá-lo totalmente, ela acumula este nutriente sob forma não protéica. O acúmulo pode levar a uma intoxicação de N nítrico (NO3-) principalmente em plantas jovens ou aquelas que estão sofrendo com uma seca ou em solos deficientes de fósforo e potássio. A deficiência de nitrogênio, como acontece com a de magnésio, provoca uma clorose ou amarelecimento das folhas. É o sinal do baixo contéudo de clorofila.
O fósforo (P) apesar de ser aproveitado em pequenas quantidades pela planta, ele não pode faltar ou ser deficiente no solo pois prejudica o crescimento da cultura. Como o nitrogênio, ele é importante na divisão celular. Na fotossíntese, ele tem uma função vital, tanto na utilização dos açúcares quanto do amido. Este nutriente apresenta uma grande mobilidade dentro da planta. Em casos de deficiência, ele migra dos tecidos velhos para os novos. As plantas jovens absorvem o fósforo muito rápidamente. Em níveis adequados de fósforo, as raízes têm um crescimento rápido e intenso. Dizem que quando a planta atingiu 25% de sua altura total, ela já consumiu 78% do fósforo que ela necessita. Isto caracteriza a real necessidade de suprir a planta com quantidades adequadas de fósforo, principalmente nas culturas de ciclo curto. As temperaturas baixas do solo reduzem a absorção de fósforo. A presença de nitrogênio amoniacal (NH3+) aumenta a absorção do fósforo favorecendo o desenvolvimento do sistema radicular. A deficiência de fósforo se caracteriza por um avermelhamento das folhas e do talo, quando as plantinhas tem menos de 30 cm de altura, como é no caso do milho. Dizemos que o milho está "roxo de fome". Quando a absorção de fósforo é menor que as necessidades, verifica-se um acúmulo de açúcar nos tecidos das plantas favorecendo a formação de um pigmento chamado antocianina que dá o colorido às folhas. Mas devemos tomar cuidado quando atribuir o avermelhamento à deficiência de fósforo. A baixa temperatura, os estragos causados por insetos às raízes e às folhas, ação dos ventos e do granizo, e danos às raízes, são responsáveis pela planta apresentar um avermelhamento das folhas. É importante as análises do solo e foliar para determinar se a deficiência é relativa ao fósforo.
O potássio (K) é também importante para as plantas. Ele se desloca no interior da planta na forma de cátion positivo (K+). Embora as culturas exijam grandes quantidades de K, a solução do solo pode apresentar pequenas quantidades. Por isto, a necessidade de uma liberação constante do íon K+ para a solução do solo. O potássio trocável, que se encontra ligado à partículas minerais, vai para a solução do solo pela troca de cátions. A regeneração do potássio se dá a partir de formas de potássio não trocável da fração de solo. O potássio não forma compostos, como fazem o nitrogênio e o fósforo. Ele age livremente no interior da planta. Ele é importante para a formação de frutos de qualidade e resistência das plantas ao frio e às doenças. Ele age na translocação do açúcar e é necessário para a formação de aminoácidos e proteínas. Plantas bem supridas de potássio resistem mais ao murchamento. Plantas mal supridas de potássio, não resistem ao acamamento. Caules fracos ocorrem quando o nível de nitrogênio é alto e o do potássio é baixo.

segunda-feira, 1 de junho de 2009

Hidroponia

"Plantas se desenvolvendo sem solo, raízes absorvendo os nutrientes através de uma solução nutritiva balanceada – isto é Hidroponia".
Esta prática é milenar, pois na China era empregada há 2.000 anos. No Brasil começou a tomar vulto a partir de 1990. Podemos usar, também, substratos inertes como: cascalho, areia lavada, lã de rocha, serragem, casca de árvores.
As plantas são colocadas em canais ou recipientes e recebem uma solução nutritiva balanceada em quantidades individuais, de água e nutrientes necessários ao seu desenvolvimento. As hortaliças, como alface, brócolis, repolho, pepino, berinjela, tomate e outras hortaliças, plantas ornamentais, mudas de árvores, etc... São produtos que não precisam de aração, gradagem, capinas. Os desperdícios com fertilizantes são muito menores, pois os nutrientes são balanceados para cada planta. O número de pulverizações contra pragas e doenças é bem menor. Como são cultivadas sem solo, as plantas estão isentas de contaminação como bactérias, fungos, lesmas, insetos. O controle de doenças e pragas, se bem que mais baixo, é muito mais fácil de executar. O produto é vendido embalado não sofrendo o contato com as mãos, com caixas, caminhões. Na embalagem você pode identificar marca, cidade onde foi produzida, nome do produtor ou do responsável técnico, características do produto e telefone para contato. Os produtos hidropônicos duram mais na geladeira. Para o produtor, os custos iniciais são bem elevados devido à necessidade de terraplanagens, construção de estufas, mesas, bancadas, tubulações com orifícios para as plantas, sistemas hidráulicos para movimentar a água e sistema elétrico. Os custos com energia são altos e não pode faltar. A hidroponia apresenta uma série de vantagens:
1 - A produção pode ser feita durante todo o ano;
2 - O controle dos nutrientes é muito melhor. É possível ajustar o balanceamento de nutrientes;
3 - A quantidade e disponibilidade de nutrientes é homogênea para todas as plantas. As plantas absorvem a quantidade de nutrientes que realmente elas precisam;
4 - O controle de doenças e pragas é facilmente realizada;
5 - O custo com mão de obra é menor. Um homem cuida de 10.000 pés de alface;
6 - Não há desperdício de água e nutrientes. A economia é de 70%
7 - A produtividade, em relação ao plantio tradicional, é 30% maior;
8 - Por ser colhida com raiz, a sobrevida da planta é maior;
9 - Um plantio de 3.400 pés de alface requer 140 m²;
10 - Não há preocupação com rotação de cultura;

No Brasil, o cultivo predominante é o NFT (nutrient film technique) ou técnica do fluxo laminar de nutrientes. Este sistema é composto por um tanque de solução nutritiva, um sistema de bombeamento, canais de cultivo. A solução nutritiva é bombeada para os canais e volta, por gravidade, ao tanque, formando uma fina lâmina de solução que irriga as raízes. Outro sistema o DFT (desp film technique) cultivo na água ou floating, a solução nutritiva forma uma lâmina profunda (5 a 20 cm), na qual as raízes ficam submersas. Não existem canais, mas uma mesa plana por onde a água circula por meio de um sistema de entrada e drenagem. Outro sistema, com substratos, é usado materiais inertes. A solução nutritiva percola através do material e é drenada na parte inferior retornando ao tanque com solução.
Cuidados com a água
A água que vai ser usada deve ser analisada para verificar a existência de nutrientes, metais pesados, salinidade, presença de fungos e bactérias. Se a água apresentar macronutrientes deve-se descontar da quantidade de adubo que vai ser adicionada. Este desconto deve prevalecer quando os macros forem maiores do que 25% que vão ser adicionados. Para os micronutrientes, 50%. As águas de poços subterrâneos são ricas em cálcio (Ca) e magnésio (Mg). Águas com cloreto de sódio (NaCl) acima de 50 ppm (50g/1.000L) começam a causar problemas de fitotoxidez e podem não ser usadas. As águas subterrâneas de rochas calcáreas ou dolomíticas contêm bons teores de Ca e Mg. Se a água for dura (elevado teor de carbonatos HCO3), causam elevação do pH e indisponibilidade do ferro (Fe). Águas com condutividade elétrica (indica o teor de sais dissolvidos) superior a 0,75 mS/cm não é recomendada para uso em hidroponia.
Huett (1994), plantas de alface cultivadas em soluções nutritivas com baixa condutividade elétrica (0,4 mS/cm) apresentaram deficiências de N e K e altores teores de Ca nas folhas novas. Com o aumento da condutividade elétrica da solução nutritiva, as deficiências desapareceram. Paulo César Costa e outros da FCA/UNESP verificaram que a condutividade elétrica da solução nutritiva influenciou o peso do material fresco e seco da cabeça de alface, sendo maior na condutividade de 2,4 ± 0,24 mS/cm.
A água potável, isenta de microorganismos e metais pesados, contribui para a formação de plantas mais saudáveis.
Consumo de água
Uma alface hidropônica consome de 75ml a 100ml de água por dia. Um projeto de 10.000 pés de alface poderá consumir de 750 a 1.000 litros de água por dia.
Um reservatório de solução nutritiva no sistema NFT deverá ter a capacidade de armazenar 500ml a 1 litro de solução por dia. Para este projeto de 10.000 pés de alface, o reservatório deverá armazenar de 5.000 a 10.000 litros de solução nutritiva.
Na solução, os nutrientes macro e micro devem ter alta solubilidade em água e alta pureza. O cultivo de plantas hidropônicas é bastante complexo e exige conhecimentos. O produtor deve ter a assistência de um responsável técnico para ter sucesso no empreendimento.

Fontes: Revista terra, Portal São Francisco

sexta-feira, 29 de maio de 2009

Produtos orgânicos X fertilizantes minerais - Parte III

Os materiais orgânicos são divididos em quatro tipos:

1. Simples – são aqueles originados de plantas ou de animais. É o caso dos estercos de bovinos e suínos, camas de frango, torta de mamona, vermicomposto, turfa, linhita, etc... O esterco fresco, que contém microorganismos causadores de doenças no homem, não é permitido o seu uso em culturas, em que a parte comestível pela população humana possa entrar em contato direto com ele. Para isto, ele deve ser “curtido”, processo que pode levar até 90 dias dependendo das condições climáticas. O esterco fresco, durante o curtimento, deve ficar protegido e ser evitado o escorrimento de água que levaria embora os nutrientes contido neles.
2. Mistos – são originados da mistura de dois ou mais orgânicos simples;
3. Compostos – estes não são um orgânico natural. São obtidos por processos químicos, físico, físico-químicos ou biológicos. Podem ser, ainda, enriquecidos com nutrientes minerais. Formados por restos de vegetais e animais são obtidos por via aeróbica (presença de ar). Sua utilização é importante, pois melhora as condições físicas, químicas, físico-químicas e biológicas do solo favorecendo o enraízamento das plantas. Nos compostos se usa restos de vegetais, ricos em carbono (C), e de animais. O esterco é rico em nitrogênio (N). Isto é importante para estabelecer a relação C/N, que inicialmente deve ser 30/1. Devem-se usar mais resíduos vegetais ricos em carbono. O processo para formar o composto é distribuir camadas alternadas de restos vegetais e de animais. Cada camada vai sendo umedecida com água evitando-se o escorrimento para não haver perda de nutrientes. Pode ser enriquecida com fosfato natural, calcário, torta de mamona, etc... A cada 15 dias se faz o reviramento das camadas e umedecendo-as. O produto deve ficar protegido, por plástico ou lona, da chuva e do solo. O composto está pronto quando ele apresentar uma redução de volume de 1/3 e não ser possível distinguir os componentes iniciais. O vermicomposto é um orgânico composto resultante da digestão da matéria orgânica proveniente de estercos, restos vegetais e outros resíduos orgânicos pelas minhocas. O lodo de esgoto é um orgânico composto resultante do tratamento de esgotos sanitários dando origem a um produto de utilização segura na agricultura atendendo aos limites estabelecidos para contaminantes.
4. Organo-minerais – são misturas de fertilizantes minerais com orgânicos simples ou compostos. Não sofrem nenhum tratamento. No caso dos fertilizantes minerais, estes devem ser naturais e de baixa solubilidade. É o caso dos fosfatos naturais, calcário, que são produtos originados de rochas apenas moídas e não sofreram nenhum tratamento químico. O superfosfato simples, fonte de P2O5, não pode ser usado, apesar de a origem ser um fosfato natural, pois é tratado com ácido sulfúrico para aumentar a solubilidade. Apenas com autorização é permitido o uso de termofosfatos que são fosfatos naturais submetidos a um tratamento térmico a temperaturas acima de 1.000 ºC.

Seja uma cultura que exige, conforme recomendação técnica, 150 kg/ha de N, 250 kg/ha de P2O5 e 180 kg/ha de K2O.
Vamos partir do N que contém o esterco bovino. A fórmula a ser usada é:
Qp = Qr x fQp = quantidade de produto em kg/ha
f = 100/%MS
Qp = 150 x 20 = 3.000 kg/ha de esterco bovino
Estes 3.000 kg/ha fornecem em fósforo e potássio, o seguinte:
Fórmula: qdade de nutriente = Qp/f
P2O5 = 3.000/40 = 75 kg/ha
K2O = 3.000/20 = 150 kg/ha
Portanto, o déficit é no fósforo (250 – 75 = 175) e potássio (180 – 150 = 30). Vamos usar o produto cinzas que fornece potássio:
Qp = 30 x 10 = 300 kg/ha de cinzasA cinzas, por sua vez, fornece fósforo:
P2O5 = 300/40 = 7 kg/ha
Até agora, o esterco de bovino e as cinzas forneceram 75+7 = 82 kg/ha de P2O5  O déficit é: 250 – 82 = 168 kg/ha
Utilizemos o fosfato natural:
Qp = 168 x 3,3 = 554 kg/ha
Chegamos ao resultado final de 3.000 kg/ha de esterco bovino; 300 kg/ha de cinzas e 554 kg/ha de fosfato natural.
Leia os outros artigos Parte 1 e Parte 2
Produtos orgânicos x fertilizantes minerais - Parte 1
Produtos orgânicos X fertilizantes minerais - Parte 2

quinta-feira, 28 de maio de 2009

Produtos orgânicos X fertilizantes minerais - Parte II

Na postagem anterior - Parte I - vimos os benefícios da aplicação de produtos orgânicos, as fórmulas a serem utilizadas para o cálculo da necessidade de produto e da quantidade de nutrientes que eles proporcionam ao solo. Na presente postagem vamos exercitar um cálculo para conhecer as quantidades de produtos a serem aplicadas, os nutrientes que eles vão fornecer às plantas, conforme as recomendações para as culturas, e a complementação de fertilizantes minerais.
Produtos orgânicos X fertilizantes minerais - Parte 1

Para isto, vamos supor um agricultor que possua um material orgânico proveniente de "cama de frango". Ele vai plantar trigo no 1º cultivo e milho como 2º cultivo.

1º Passo - conhecer a composição em nutrientes e matéria seca (MS) da cama de frango. Os nutrientes que desejamos conhecer seus teores é N, P2O5 e K2O.



Lote = o número de lotes que a mesma cama suportou. Vamos escolher a cama de frango (7-8 Lotes)
2º Passo - conhecer o índice de eficiência dos nutrientes no solo

3º Passo - conhecer as recomendações de nutrientes para cada cultura estudada.

4º Passo - calcular a quantidade de produto a ser aplicado ao solo

Iniciemos pelo potássio K2O . Apliquemos a fórmula já conhecida.
Qn = A x B/100 x C/100 x D
Onde Qn = quantidade do nutriente em kg/ha; A= quantidade de produto a ser aplicado em kg/ha; B = teor de matéria seca; C = teor do nutriente na composição do produto; D = índice de eficiência do nutriente.
60 kg/ha K2O = A x 75/100 x 3,5/100 x 1,0 ; 60 kg/ha K2O = A x 0,026 ; A = 60/0,026 ; A = 2.308 kg/ha ; A = 2,3 t/ha
Portanto, precisaremos de 2,3 t/ha de cama de frango (7-8 Lotes) para suprir os 60 kg/ha de K2O.

5º Passo - calcular as quantidades dos demais nutrientes
2,3 t/ha = 2.300 kg/ha
N kg/ha = 2.300 x 75/100 x 3,8/100 x 0,5; obtemos N = 33 kg/ha (arredondando)
P2O5 kg/ka = 2.300 x 75/100 x 4/100 x 0,8; P2O5 = 55 kg/ha
Portanto estas 2,3 t/ha fornecem 33kg/ha N - 55 kg/ha P2O5 - 60 kg/ha K2O.
Para o 2° cultivo esta quantidade residual seria:
N kg/ha = 2.300 x 75/100 x 3,8/100 x 0,2 ; N= 13 kg/ha
P2O5 kg/ha = 2.300 x 75/100 x 4/100 x 0,2 ; P2O5 = 14 kg/ha


6º Passo - calcular as quantidades de produto e nutrientes para o 2º cultivo
50 kg/ha K2O = A x 75/100 x 3,5/100 x 1,0 ; A = 1.900 kg/ha A = 1,9 t/ha
N kg/ha = 1.900 x 75/100 x 3,8/100 x 0,5 ; N = 27 kg/ha
P2O5 kg/ha = 1.900 x 75/100 x 4/100 x 0,8 ; P2O5 = 45 kg/ha

7° Passo - Calcular o deficit de nutrientes para complementação com fertilizante mineral.
Para calcular o déficit empregamos a fórmula: Dfn = Rn - Fn onde:
Dfn = déficit do nutriente em kg/ha; Rn = recomendação do nutriente em kg/ha, fn = quantidade de nutriente fornecida pela adubação orgânica.
Para o trigo os déficit são:
N = 60 - 33 = 27 kg/ha
P2O5 = 70 = 55 = 15 kg/ha
K2O = 60 - 60 = 0 kg/ha
Os 27 kg/ha de N podem ser supridos através de uma adubação de cobertura. Teria que ser adicionado 15 kg/ha de P2O5.
O déficit para o milho (2º cultivo) conforme a tabela 4 obtida por cálculos idênticos é 50 kg/ha de N e 6 kg/ha de P2O5  Os 50 kg/ha de N através de adubações de cobertura. Os 6 kg/ha de P2O5 teriam que ser adicionados.

8º Passo - calcular o residual deixado pela aplicação do produto no 2º cultivoOs 1,9 t/ha de produto aplicado no milho deixariam, como residual, para o próximo cultivo o seguinte:
N kg/ha = 1.900 x 75/100 x 3,8/100 x o,2 ; N = 10,8 kg/haP2O5 kg/ha = 1,900 x 75/100 x 4/100 x 0,2 ; P2O5 = 11,4 kg/ha

Leia a Parte 3:
produtos orgânicos x fertilizantes minerais - Parte 3

terça-feira, 26 de maio de 2009

Produtos orgânicos X fertilizantes minerais - Parte I

A adubação orgânica vem tendo uma importância muito grande quando se fala em nutrição do solo. Os adubos orgânicos provém de estercos de animais, restos de culturas e adubo verde. Vem ganhando força, no cenário agrícola, o lodo de esgoto como fonte de nutrientes para as plantas. É óbvio que a adubação orgânica pela baixa concentração de nutrientes não substitui totalmente os fertilizantes minerais. Mas os adubos orgânicos contribuem para uma melhor aeração do solo, armazenamento de água e drenagem do solo. Os estercos sólidos e os restos orgânicos apresentam uma relação carbono/nitrogênio mais alta. Há uma decomposição mais lenta no solo liberando menores quantidades de nutrientes para as plantas.
Os agricultores de Londrina/PR terão à disposição 300 m³ de lodo de esgoto (LE). O produto já vem sendo usado pelos agricultores da região metropolitana de Curitiba/PR. Eles falam do aumento na produção de 30 a 40% e de economia na aplicação de calcário e fertilizantes. Existem duas Estações de Tratamento de Esgoto - ETE -, uma em Londrina e outra em Cambé. Elas geram 15.000 m³ de esgoto por ano. Os agricultores estão satisfeitos visto a diminuição dos custos em fertilizantes e calcários, já que o LE possui estes nutrientes. O LE é rico em matéria orgânica e tem quantidade significativa de nutrientes como é o caso do nitrogênio (N). Pode ser usado nas culturas de trigo, milho e soja. Todavia não é indicado para hortaliças e plantas cuja parte destinada à alimentação humana se desenvolva em contato direto com a terra. Além do N, o lodo de esgoto contém fósforo (P), micronutrientes e cálcio. O cálcio é proveniente do tratamento do produto com cal para higienização. A cal usada pode substituir, em parte, a quantidade de calcário recomendada para aplicação no solo. Há um controle da existência de metais pesados antes da liberação do produto. Na região metropolitana de Curitiba já foram distribuídos, no período de 2000-2008, 175.300 m³ de lodo de esgoto. Em Foz do Iguaçú, 1.500 m³.
CARVALHO & BARRAL (1981) disseram que pelo processo de mineralização da matéria orgânica (M.O), há uma lenta liberação de nutrientes ocasionando um melhor aproveitamento para as plantas. LESLIE (1970) e MAYS et al (1973) demonstraram que o crescimento das plantas e a produção de grãos foram iguais ou maiores que àquelas que receberam fertilizantes químicos. CUNNINGHAN et al (1973) obteram aumento na produção de milho relacionada à liberação de nutrientes NPK. SABEY et al (1977) verificaram que as plantas de trigo tiveram maior desenvolvimento em solos que receberam lodo de esgoto, misturado com restos de madeira, em comparação à fertilização mineral. F.C.Oliveira e outros (1995) verificaram que o LE liberou nutrientes que foram absorvidos pelas plantas de sorgo e que há uma necessidade de complementar o LE com potássio (K). Verificaram, também, que aplicações de LE acima de 20 t/ha pode apresentar resultados melhores no desenvolvimento do sorgo.

1 - Produtos orgânicos sólidos

Para calcular a quantidade de nutrientes contidas em um material orgânico usa-se a fórmula:

Qn = A x B/100 x C/100 x D
, onde

A = quantidade de material aplicado em kg/ha;
B = % de matéria seca (MS) do material aplicado;
C = % do nutriente na matéria seca;
D = índice de eficiência de cada nutriente.
Por exemplo, seja 1.000 kg/ha de material orgânico com 70% de MS, teor de nitrogênio (N) de 3,8% e um índice de eficiência do nitrogênio de 0,5


N kg/ha = 1.000 x 70/100 x 3,8/100 x o,5 ; N = 13 kg/ha

2 - Produtos orgânicos líquidos

Qn = A x B x C


A = quantidade de material aplicado em m³
B = concentração do nutriente no produto em kg/m³
C = índice de eficiência de cada nutriente

A utilização de restos orgânicos e fertilizantes minerais são capazes de otimizar a produção das plantas. Como já escrevemos, somente o material orgânico não é suficiente para elevar a produtividade pois a relação de nutrientes existente no material é diferente daquela exigida pela cultura. Há necessidade de complementar com o uso de adubos minerais.
Leia as Partes 2 e 3
Produtos orgânicos x fertilizantes minerais - Parte 2
Produtos orgânicos x fertilizantes minerais - Parte 3

terça-feira, 19 de maio de 2009

Os nutrientes das plantas (5) - Manganês (Mn),Molibdênio (Mo) e Zinco (Zn)


Micronutrientes
Manganês (Mn):
O manganês (Mn) é importante na produção de clorofila, de carboidratos e no metabolismo do nitrogênio. O manganês influencia o nível de ferro na planta. Altos níveis de manganês reduzem os níveis de ferro.
Os sintomas de deficiência de manganês são semelhantes aos do ferro, ou seja, folhas verdes com amarelecimento entre as nervuras.
O manganês é absorvido na forma de Mn++.

Molibdênio (Mo):
O molibdênio tem um papel significativo para a fixação do nitrogênio pelas bactérias, no caso das leguminosas. Atua, também, no metabolismo do nitrogênio na planta. O sintoma de deficiência é igual àquela do nitrogênio – folhas amareladas.
O excesso de molibdênio pode ser tóxico para os animais e para as sementes em germinação prejudicando a absorção e translocação de ferro pela planta.
O molibdênio é absorvido pela planta na forma de MoO4‾ ‾.

Zinco (Zn):
O zinco é fundamental para a síntese das proteínas, desenvolvimento das partes florais, produção de grãos e sementes e maturação precoce das plantas.
Em solos com baixo teor de zinco, a aplicação de fertilizantes fosfatados nos sulcos ou ao lado das fileiras das plantas induzem a deficiência de zinco. A aplicação dos fosfatados em cobertura total não afetou a disponibilidade do zinco.
O zinco é absorvido pela planta na forma de Zn++.

INTERAÇÃO ENTRE OS NUTRIENTES:

Excesso de cobre - afeta a disponibilidade do ferro
Ferro e manganês - são antagônicos
Zinco e ferro - são antagônicos
Potássio e cálcio - em altas doses diminui a absorção de boro
Aplicação de nitrogênio - aumenta a utilização e absorção de micronutrientes
Aplicação de magnésio - em altos níveis favorece a absorção de fósforo
Aplicação de fósforo - em altos níveis favorece a absorção de Molibdênio

sexta-feira, 15 de maio de 2009

Cálculo da dose de adubo para saturar parte da CTC

A análise de um solo apresenta os seguintes resultados:
K = 0,8 mmolc/ dm3
Ca = 0,7 cmolc/dm3
Mg = 0,3 cmolc/dm3
(H+ + Al³+) = 5,5 cmolc/dm³

Na aplicação do calcário pretendemos elevar o pH a 6,0. Com esta prática haveria uma liberação de cargas negativas equivalentes a 65% da Capacidade de Troca de Cátions – CTC a pH 7,0. Queremos que 3,5% da CTC seja saturada com potássio. Precisaríamos incorporar ao solo um adubo potássico – o cloreto de potássio. Qual a quantidade de KCl será necessário?.
1° Passo: Calcular a soma de bases (S)
S= Ca + Mg + K
Precisamos transformar K = 8 mmolc/ dm³ em cmolc/dm³.
Os demais cátions estão expressos em cmolc/dm³. Então, precisamos converter o K para cmolc/dm³.
K = 0,8 / 10 = 0,08 cmolc/dm³

S = 0,7+0,3+0,08 = 1,08 cmolc/dm³

2° Passo: Calcular a CTC a pH 7,0 (T)

T = S + (H+ + Al³+)
T = 1,08+5,5 = 6,58 cmolc/dm³

A CTC a pH 7,0 deste solo é igual a 6,58 cmolc/dm3. Sessenta por cento (65%) desta CTC corresponderia:
100% ........................ 6,58 cmolc/dm³
65% ........................   X cmolc/dm³
X = 65 x 6,58 / 100 = 4,27 cmolc/dm³

Deste valor 4,27, deve-se ocupar 3,5% com K
100% .......... 4,27 cmolc/dm³
3,5% ..........  X  cmolc/dm³K
X = 3,5 x 4,27 / 100 = 0,149 cmolc /dm³ K

3° Passo: calcular a reposição de potássio (K)
O solo, já possui 0,08 cmolc de K/dm³
Portanto, 0,149 – 0,08 = 0,069 cmolc de K/dm³ que faltam para se ter 3,5% da CTC a pH 6,0 ocupada por potássio.
Pela tabela 1 (veja mais abaixo) o coeficiente para transformar cmolc/ dm³ de K em g K é 0,3909. Então 0,069 x 0,3909 = 0,026972 g/dm³ de K

Pela Tabela II para transformar-se g/dm³ em kg/ha deve-se multiplicar por 2.000. Logo:


0,026972 g/dm3 de K x 2.000 = 53,94 kg/ha de K.

4° Passo: transformar K em K2O
Mas no fertilizante cloreto de potássio, o potássio está na forma K2O. Então, teremos que transformar os valores de K em K2O.
Para isto, usamos a Tabela 1 e encontramos o fator de conversão de 1,20458.


53,94 kg/ha x 1,20458 = 64,97 kg /ha de K2O.

5° Passo: calcular a quantidade de adubo potássico
Como o cloreto de potássio (KCl) tem 60% de K2O,
100 kg de KCl...................60 kg de K2O
X .kg de KCl ....................64,97 kg/ha de K2O
X = 64,97 x 100 / 60 = 108 kg/ha de KCl

quinta-feira, 14 de maio de 2009

Os nutrientes das plantas(4) - Boro (B), Cobre (Cu) e Ferro (Fe)

Micronutrientes:
Boro (B):

O boro (B) apresenta uma série de atividades e funções nas plantas:
• Divisão celular;
• Viabilidade dos grãos de polén;
• Formação dos frutos;
• Metabolismo dos carboidratos e da água;
• Síntese das proteínas.

As deficiências de boro, de acordo com as culturas, são:

• Crescimento prejudicado;
• Má formação dos frutos;
• Morte dos brotos terminais;
• Folhas de bordos enrolados;
• Grande queda dos frutos;
• Amarelecimento das nervuras das folhas;
• Queda excessiva de botões florais;
• Fendas através do caule.

O baixo nível de umidade diminui a disponibilidade de boro. A aplicação de boro em excesso pode tornar-se tóxico para as plantas.
A forma de boro absorvida pelas plantas é a (BO³ ‾).

Cobre (Cu):

O cobre (Cu) é importante na formação da clorofila. O cobre é necessário em pequenas quantidades.
As deficiências de boro aparecem tanto em solos com alto teor de matéria orgânica como em solos arenosos e ácidos, e em solos alcalinos.
Altas temperaturas com alta umidade são desfavoráveis para a liberação de cobre pela matéria orgânica.
As deficiências mais comuns de boro são:
• Morte dos ramos novos;
• Folhas amarelas;
• Folhas torcidas com pontas secas;
• Amarelecimento entre as nervuras;
• Morte das folhas.

O cobre reage com a matéria orgânica do solo formando compostos que não são aproveitáveis pelas plantas de imediato. Por isto, em solos com alto teor de matéria orgânica há necessidade de aplicações anuais. A aplicação excessiva de cobre pode torná-lo tóxico principalmente em solos pobres de matéria orgânica.
O cobre apresenta problemas quando misturados com outros fertilizantes. O sulfato de cobre solúvel reage para formar compostos insolúveis com os fosfatos de amônio de fertilizantes fluidos.
O cobre (Cu) é absorvido nas formas Cu+ e Cu++.

Ferro (Fe):

O ferro é importante para a produção de clorofila e para o processo de respiração ou seja transferência de energia.
O amarelecimento entre as nervuras das folhas novas é um sintoma da deficiência de ferro. Uma deficiência severa pode apresentar folhas quase brancas como no sorgo.
Os fertilizantes foliares são a melhor via de aplicação de compostos de ferro.
O ferro é absorvido pelas plantas nas formas Fe++ e Fe+++.

quarta-feira, 29 de abril de 2009

Os Nutrientes das Plantas (2) - O Fósforo (P)

Na publicação "Os Nutrientes das plantas (1) , abordamos sobre o nitrogênio (N) e o potássio (K) que junto com o fósforo (P) são os chamados macronutrientes primários, os quais as plantas precisam em maior quantidade. São os componentes dos adubos NPK
Dos três macronutrientes primários exigidos pelas plantas, o fósforo é absorvido em pequenas quantidades. Mas sua presença no solo é indispensável para o crescimento e produção de grãos e frutos. O fósforo é importante para a realização da fotossíntese.
O fósforo, na planta, apresenta uma grande mobilidade. Em casos de deficiência, o fósforo tem a propriedade de mover-se dos tecidos velhos para os mais novos.
A qualidade e o amadurecimento precoce de grãos e frutos estão relacionados com uma adequada nutrição de fósforo.
As plantas jovens absorvem o fósforo mais rapidamente o que permite um crescimento rápido e intenso das raízes em ambientes com níveis adequados do nutriente. Afirma-se que quando as plantas atingirem 25% da altura total, elas já armazenaram 78% de suas necessidades totais em fósforo.
Isto explica porque deve haver um suprimento adequado de fósforo no momento que as plantas começam a germinar, particularmente em plantas de ciclo curto.
Os fertilizantes fosfatados, sob a forma solúvel em água, reagem no solo com o ferro, alumínio, argilas, matéria orgânica, formando compostos insolúveis não aproveitáveis pelas plantas. Por isto, uma cultura aproveita apenas 15 a 25% do fósforo aplicado como fertilizante.
Isto explica o porquê das fórmulas de fertilizantes (NPK) apresentarem o teor relacionado ao fósforo em maior quantidade se as plantas exigem pequenas quantidades deste nutriente. Por exemplo: a fórmula 5-30-25 é um adubo NPK contendo 5% de nitrogênio (N), 30% de fósforo (P) e 15% de potássio (K). Nesta fórmula, o maior nutriente em quantidade é o fósforo (P=30).
Por que? Como vimos as plantas aproveitam de 15 a 25% do fósforo aplicado no solo. Portanto, a necessidade de se utilizar fórmulas com altas concentrações de fósforo para liberar aquela quantidade que a planta necessita para o seu desenvolvimento até a maturação. O restante do fósforo que foi fixado no solo será liberado com aplicações de calcário (calagem).
No solo, o fósforo é pouco móvel pois é firmemente retido não sofrendo com a percolação. Mesmo em campos irrigados, a água de drenagem apresenta valores de fósforo que não excedem a 1 mg/dm3. Sendo assim, as perdas de fósforo por percolação são desprezíveis. Entretanto, a erosão é a responsável pelas maiores perdas de fósforo. Na erosão, verifica-se perdas de matéria orgânica e partículas coloidais com fósforo.
Os fertilizantes fosfatados solúveis em água apresentam uma solubilidade alta. Isto se explica o conceito de que somente os fosfatados solúveis em água são aproveitados pelas plantas. Por causa desta solubilidade, o fósforo move-se a pequenas distâncias a partir do ponto de aplicação. Assim sendo, o volume de solo enriquecido com fósforo é pequeno. Isto tende a ser menor quando se faz uma aplicação nos sulcos do que quando se aplica em cobertura total.
No solo, o fósforo encontra-se nas formas de fixado, imobilizado, adsorvido e disponível.

1. FIXADO – é aquela forma de fósforo mineral que se encontra combinada a outros elementos como cálcio, ferro e alumínio, formando compostos não assimiláveis pelas plantas. Esta fixação depende das condições inerentes a cada solo e pode ocorrer com maior ou menor intensidade.

2. IMOBILIZADO – é aquela forma de fósforo que se apresenta na fórmula orgânica não assimilável pelas plantas. Este fósforo torna-se disponível para a planta pela mineralização da matéria orgânica.

3. ADSORVIDO – é aquela fração de fósforo que se encontra preso ao complexo coloidal do solo tornando-se disponível através de trocas com as raízes.

4. ASSIMILÁVEL – é aquela parte de fósforo que se encontra diluído na solução do solo sendo facilmente absorvido pelas plantas.

FÓSFORO DISPONÍVEL = FÓSFORO ADSORVIDO + FÓSFORO ASSIMILÁVEL

A ilustração acima nos mostra que:
1. O fosfato solúvel em água em contato com a solução do solo, solubiliza-se tornando-se imediata e totalmente disponível. Parte deste fósforo fica diluído na solução do solo e parte fica adsorvido ao complexo coloidal (argilas), por troca iônicas com OH‾;
2. Nossos solos sendo ácidos apresentam elevados teores de ferro, e alumínio e outras bases e, portanto, grande parte do fósforo disponível é fixada, formando compostos de ferro e alumínio insolúveis;
3. Parte do fósforo disponível é absorvida pelos vegetais e pelos microorganismos do solo para obterem a energia para viverem. Temos, então, o fósforo imobilizado;
4. O fósforo fixado poderá voltar a ser disponível pela ação dos ácidos orgânicos provenientes da mineralização da matéria orgânica, pela acidez livre do solo (H+), pelas secreções ácidas das raízes e pelo gás carbônico do ar do solo;
5. Com a morte dos microorganismos do solo e dos restos de culturas, o fósforo imobilizado pode tornar-se, novamente, disponível para as plantas pelo processo de mineralização da matéria orgânica.

O número de microorganismos no solo é grande. Apenas em 1 grama de solo encontramos de milhares a milhões de fungos, bactérias, algas e protozoários, etc...
Nesta ação de desdobramento da matéria orgânica do solo pelos microorganismos, resultam ácidos fracos ( acético, cítrico, fórmico e outros) os quais podem solubilizar as formas de fósforo fixado. Parte do fósforo é aproveitado pelos microorganismos e parte fica disponível na solução do solo para ser absorvida pelas plantas ou ser novamente fixada.

RETROGRADAÇÃO DO FÓSFORO:
Em solos com altos teores de cálcio (Ca) sob a forma livre de carbonato de cálcio, pela retrogradação, o fósforo do adubo é convertido em fosfato tricálcico que não é aproveitado pela planta. É uma forma semelhante à da rocha fosfatada. Entretanto na retrogradação o fósforo não fica perdido, mas torna-se disponível lentamente para as plantas.

FIXAÇÃO DE FÓSFORO:
É um problema sério que ocorre nos solos ácidos. O fósforo é fixado pelo ferro e pelo alumínio. O fósforo torna-se indisponível para as plantas. A aplicação de calcário é uma maneira de melhorar esta indisponibilidade. Os íons (OH‾) gerados pelo cálcario tomam o lugar dos íons de fósforo fixado liberando-os para a solução do solo. Este é um dos maiores benefícios indiretos da calagem.
A reação com as argilas, principalmente aquelas com relação 1:1 (1 sílica: 1 alumínio) – as caulinitas, é outra maneira de fixação do fósforo.
O oxigênio (aeração) é necessário para o crescimento das plantas e para a absorção dos nutrientes. Também é importante na decomposição da matéria orgânica do solo que é uma das fontes de fósforo. A compactação reduz a aeração e o espaço poroso das raízes. Isto reduz a absorção de fósforo e, consequentemente, afeta o crescimento das plantas. A compactação impede, também, as raízes de ocuparem uma maior área de solo pela penetração, limitando o acesso aos nutrientes.
O aumento da umidade até níveis ótimos faz com que o fósforo fique mais disponível. Entretanto, o excesso de umidade reduz a aeração.
Temperaturas adequadas facilitam a decomposição da matéria orgânica. Mas quando elas são muito altas ou muito baixas, limitam a absorção de fósforo.

O fósforo é absorvido pelas plantas sob a forma de ânions H2PO4‾ e HPO4²‾. A mais comum é a H2PO4‾ .

segunda-feira, 27 de abril de 2009

Interpretação da Análise do Solo - Parte 3 - Adubação

A adubação é a reposição dos nutrientes para as plantas. Cada planta tem uma necessidade de nutrientes. A análise do solo vai nos dar um espelho das condições de fertilidade deste solo. De acordo com os nutrientes disponíveis no solo, a recomendação vai se basear em tabelas fornecidas pelos órgãos de pesquisa. Para visualizar as publicações Parte 1 e Parte 2, basta acessar os links abaixo:
Interpretação Análise do Solo - Parte 1
Interpretação Análise do Solo - Parte 2

1° PASSO
Precisamos saber o teor de nutrientes no solo. Quem vai nos dar isto é o resultado da análise do solo. Para cada Estado brasileiro existe uma tabela com a classificação dos teores de nutrientes no solo.


Aqui verificamos que o K está expresso em mmolc/dm3. Para passar o teor de cmolc/dm3 para mmolc/dm3 basta multiplicar por 10. Ex.: 0,06 cmolc/dm3 de K é igual a 0,6 mmolc/dm3.
Por hipótese, seja um resultado de análise que aponta:
P (resina) = 4 mg/dm3
K = 0,05 cmolc/dm3. Para se adequar à tabela acima devemos multiplicar este valor por 10 para termos em mmolc/dm3. Ou seja, 0,5 mmolc/dm3.
Verificamos que o solo desta análise se enquadra na 1ª. faixa onde os teores de N, P2O5 e K2O são, respectivamente, 20 – 80 – 60.

2° PASSO
Agora devemos achar as fórmulas de fertilizantes que podem ser utilizadas.
Se dividirmos a recomendação 20-80-60 pelo menor número (20) teremos uma relação 1-4-3. Todas as fórmulas de fertilizantes que estejam nesta relação poderão ser usadas. O que vai diferenciar é a quantidade - quanto mais concentrada a fórmula menor a quantidade de adubo a ser aplicada. Para isto, multipliquemos toda relação por coeficientes:
x 5 = o resultado é uma fórmula 05-20-15
x 6 = 06-24-12
x 7 = 07-28-21
Qual a quantidade a aplicar de cada uma:
QF (kg/ha) = (dosagem recomendada / teor de nutriente na fórmula) x 100
QF = quantidade da fórmula de fertilizante em kg/ha
Dosagem recomendada do respectivo nutriente: ou N, ou P ou K
QF (kg/ha) = (20 / 5) x 100 = 400 kg/ha.
Com a fórmula 06-24-12 teremos QF (kg/ha) = (20 / 6) x 100 = 335 kg/ha
Com a fórmula 07-28-21 teremos QF (kg/ha) = (20 / 7) x 100 = 285 kg/ha


Nosso solo se enquadra na 1ª. faixa e as recomendações de N, P2O5 e K2O em kg/ha são 50-120-140. Se dividirmos pelo menor nutriente (50) teremos uma relação 1 – 2,4 – 2,8
Multiplicando esta relação por coeficientes teremos as seguintes fórmulas de fertilizantes:
x 7 = 07 – 16,8 – 19,6 arredondando teremos a fórmula 07 – 17 - 20
x 8 = 08 – 19,2 – 22,4 ou seja 08 – 20 – 22
x 9 = 09 – 21,6 – 25,2 ou seja 09 – 22 - 25
x 10 = 10 – 24 – 28
QF (kg/ha) = (50 / 10) x 100 = 500 kg/ha da fórmula 10-24-28
QF (kg/ha) = (50 / 7) x 100 = 715 kg/ha da fórmula 07-17-20 e assim por diante
Muitas vezes não conseguimos achar, no mercado, formulações com NPK igual ao que calculamos. Nestes casos, tenha em mente que é dada uma tolerância de ±10% . Além disto não podem ser comercializados fertilizantes sólidos NPK cuja soma dos três nutrientes é menor que 21. Para as misturas sólidas NP, PK, NK o mínimo é 18%.
Fórmula 04-10-06 soma = 20 (não pode ser comercializada)
Fórmula 00-08-08 soma = 16 (não pode ser comercializada)

As necessidades de N, P2O5 e K2O para o nosso solo, usado como exemplo, são 100-30-130. Relação 3,3 – 1 – 4,3 (divisão por 30).
x 6 = 19,2 – 06 – 25,8 ou 20 – 06 – 26
x 5 = 16,5 – 05 – 21,5 ou 16 – 05 – 22
Quantidade por hectare
QF (kg/ha) = (30 / 6) x 100 = 500 kg/ha de 20-06-26
QF (k/ha) = (30 / 5) x 100 = 600 kg/ha de 16-05-22
Não esqueçam da fórmula para encontrar as quantidades de adubo por hectare.
Espero ter atingido os objetivos de explanar de maneira fácil os conhecimentos nos 3 capítulos da "Interpretação de Análises de Solos". É só praticar. Qualquer dúvida, comentem ou peçam auxílio.

sábado, 25 de abril de 2009

Interpretação da Análise do Solo - Parte 2 - Calagem

A análise do solo é o principal item para quem quer obter alta produtividade em suas lavouras. Somente corrigindo a acidez e repondo os nutrientes, além de outras práticas agrícolas, como o uso de sementes certificadas, combate às pragas e doenças, cuidados na colheita, etc... é que poderemos alcançar boas produções nas lavouras. É claro, se o clima ajudar.
Na 1ª parte do assunto “interpretação de análise do solo” comentamos como interpretar a análise aliada às recomendações de calagem e fertilizantes.
Interpretação da análise do solo - Parte 1

Vamos abordar nesta postagem a calagem. Esta prática da calagem é importante para “matar” a acidez do solo. Quem vai nos dizer a quantidade que devemos usar é a análise do solo.

1° PASSO
Teremos que ter em mãos os seguintes índices encontrados ou não no resultado da análise do solo: V%, T, m%, teores de Ca, Mg e K, teor de Al e (H+Al), valor S (soma de bases), teor de argila do solo e PRNT do calcário. Se a análise não apresentar todos eles, teremos que calculá-los.
Seja uma análise de solo que apresenta os seguintes resultados:
pH em água – 4,4; pH em CaCl2 – 4,0
P (Mehlich) – 1 mg/dm³ ; P (resina) = 6 mg/dm³
K = 25 mg/dm³ ; Ca = 0,8 cmolc/dm³; Mg = 0,2 cmolc/dm³
Al = 1,6 cmolc/dm³ ; (H+Al) = 5,2 cmolc/dm³

Cálculo da soma de bases (S ou SB)

S = Ca + Mg + K + (Na)
ADVERTÊNCIA: a soma de bases é expressa em cmolc/dm³ ou mmolc/dm³. Na análise acima, o Ca e Mg estão expressos em cmolc/dm³. O K está expresso em mg/dm³. Para calcular Soma de bases (S ou SB), os elementos devem estar expressos da mesma forma, ou seja, em cmolc/dm³.
Portanto, é preciso transformar os 25 mg/dm³ de K em cmolc/dm³.
A expressão mg/dm³ é o mesmo ppm (unidade antiga) que significa “partes por milhão” = 1.000.000 g de solo.
Então, 25 mg/dm³ de K ------------------- 1.000.000 g de solo
......................X ----------------------------- 100 g

X= g K = 100 x 25 / 1.000.000 = 0,0025 g de K


Pode-se usar a tabela II para achar este resultado, bastando multiplicar os 25 mg/dm³ de K por 0,0001 = 0,0025
Agora devemos transformar 0,0025 g de K em cmolc/dm³
A fórmula a ser usada é:

Cmolc K = Massa atômica em g/Valência/1.000

A valência do K = 1
Logo,
1 cmolc K = 39 / 1 / 1.000 = 0,039 g/dm³ K
1 cmolc K -----------0,039 g K
.......Y ---------------- 0,0025 g K
Y = 0,0025 x 1 / 0,039 = 0,06 cmolc/dm³ de K
Portanto, 25 mg/dm³ K = 0,06 cmolc/dm³ de K

Sobre conversões de nutrientes da análise do solo, leia mais:
Tabela de conversão de unidades da análise do solo
Interpretação da análise do solo - cmolc e mg/dm³
Converter cmolc/dm³ de K, Ca, Mg e Na em mg/dm³
Converter dag/kg em g/kg e vice-versa

Soma de bases (S)
S= K + Ca + Mg + Na
S = 0,8+0,2+0,06
S = 1,06 cmolc/dm³

CTC efetiva (t)
t = S + Al 
t = 1,06 + 1,6
t = 2,66 cmolc/dm³

Porcentagem de saturação por Al (m%)
m (%) = 100 x Al / t
m (%) = 100 x 1,6 / 2,66;
m = 60,15%

CTC a pH 7,0 (T)
T = S + (H+Al) T 
T = 1,06 + 5,2;
T = 6,26 cmolc/dm³

Porcentagem de Saturação por Bases da CTC a pH 7,0 (V%)
V (%)= 100 x S /T
V (%) = 100 x 1,06 / 6,26
V = 16,93% (solo de muito baixa fertilidade)

Porcentagem de Saturação por Ácidos da CTC a pH 7,0 M%)
M(%) = 100 - V
M (%) = 100 - 16,93 
M = 83,07 %

2° PASSO
De posse dos dados do passo anterior estamos aptos a calcular a necessidade de calcário específica para cada estado conforme as fórmulas que apresentamos a seguir. Convém chamar a atenção que a fórmula para cálculo da necessidade de calagem pelo método V% é diferente quando o valor "T" está expresso em cmolc/dm³ ou em mmolc/dm³.
No caso de T expresso em cmolc/dm³, a fórmula é a seguinte:
NC (t/ha) = (V2-V1) x T / 100
No caso do valor "T" expresso em mmolc/dm³, a fórmula é a seguinte:
NC (t/ha) = (V2-V1) x T / 10 x 100
No cálculo da necessidade de calagem é importante a atenção no uso correto da fórmula no que diz respeito aos valores expressos da Capacidade de Troca de Cátions a pH 7.0 (CTC a pH7.0) ou valor "T".
Recomendo ler: 
Valor CTC mal aplicado superestima a necessidade de calagem

No Rio Grande do Sul e Santa Catarina, a Comissão de Química e Fertilidade do Solo publicou uma tabela para recomendação de calcário e adubação para diversas culturas destes Estados. A calagem é baseada no índice tampão SMP.

No Paraná e Mato Grosso, a necessidade de calagem baseia-se no valor da porcentagem de saturação por bases (V%). A recomendação é aplicada em solos que apresentam V% menor que 50% procurando atingir 60%. A fórmula a ser aplicada é a seguinte (baseada nos valores em cmolc/dm³ da análise acima):

NC (t/ha) = (
V2-V1) x T x f / 100
NC significa necessidade de calcário em t/ha;
T = capacidade de troca de cátions.
V2 = 60% (valor que buscamos)
V1 = valor V na análise. Pode ser calculada, também, V = 100 x S/T
f = 100/PRNT (foi incluído o fator "f" para calcular diretamente a correção do PRNT)
Pelos dados que já calculamos teríamos:
NC (t/ha) = (60 – 16,93) x 6,26 x 1,25 /100
NC = 3,37 t/ha
Calcário com 80% de PRNT, logo f = 100/80 = 1,25

No Mato Grosso do Sul é recomendada a calagem quando a porcentagem de saturação por Al (m%) for maior que 10%. No nosso exemplo m= 60,15%

NC (t/ha)= Al x 2 x f

NC (t/ha) = 1,6 x 2 x 1,25 = 4 t/ha

Em São Paulo aplica-se calcário para elevar o valor V a 70%. A fórmula de cálculo é a mesma usada no Paraná.

NC (t/ha)= (
V2-V1) x T x f / 100

Onde V2 será 70 e V1 o encontrado no resultado da análise.
NC (t/ha) = (70 – 16,93) x 6,26 x 1,25 / 100 = 4,15 t/ha
O teor de Mg deve ser elevado a um valor mínimo de 5. Daí a escolha de um calcário magnesiano ou dolomítico.

Nos Estados de Goiás, Minas Gerais, Bahia e Mato Grosso, a calagem é recomendada em função do teor de argila.
Para solos argilosos (mais de 20% de argila) a fórmula é:

NC (t/ha) = [(Al x 2) + 2 – (Ca + Mg)] x f


NC (t/ha) = [1,6 x 2) + 2 – (0,8+0,2)] x 1,25
NC = 5,25 t/ha

Em solos arenosos, em que o teor de argila é menor que 20%, usam-se duas fórmulas de cálculo e escolhe-se a que apresentar maior quantidade.

NC (t/ha) = (Al x 2) x f  
       (1)
NC (t/ha) = [2- (Ca + Mg)] x f      (2)

NC = (1,6 x 2) x 1,25       (1)
NC = 4 t/ha
NC (t/ha) = [2-(0,8+0,2)] x 1,25     (2)
NC = 1,25 t/ha Escolhe-se a maior quantidade: 4 t/ha.

Leia a Parte 3:
Interpretação da análise do solo - Parte 3

ATUALIZAÇÃO
Recomendo ler, também, os artigos da "Série Interpretação da  Análise do Solo" onde os conceitos da análise do solo são abordados individualmente.

O pH do solo na análise do solo - Interpretação da análise do solo (1)
Argila e matéria orgânica na análise do solo - Interpretação da análise do solo (2)
Cátions trocáveis e as CTC's na análise do solo - Interpretaçao da análise do solo (3)
Cátions ácidos e saturação por alumínio na análise do solo - Interpretação da análise do solo (4)
Percentagem de saturação por bases (V%) na análise do solo - Interpretação da análise do solo (5)
Necessidade de calagem pela análise do solo - Interpretação da análise do solo (6)
Percentagem de saturação dos cátions básicos na análise do solo - Interpretação da análise do solo (7)
Relação Ca:Mg na análise do solo - Interpretação da análise do solo (8)
Escolha do calcário para saturar Ca e Mg pela análise do solo - Interpretação da análise do solo (9)
Recomendação de adubação PK pela análise do solo - Interpretação da análise do solo (10)